
Preemptive Sheduling in OverloadedSystems
Marek Chrobak a;1;4, Leah Epstein b;2, John Noga ,Ji�r�� Sgall d;�;3;4, Rob van Stee e;5, Tom�a�s Tih�y d;3;4,Nodari Vakhania f;6aDepartment of Computer Siene, University of California, Riverside, CA 92521,U.S.A.bShool of Computer Siene, The Interdisiplinary Center, P.O.B. 167,46150 Herzliya, IsraelDepartment of Computer Siene, California State University,Northridge, CA 91330, U.S.A.dMathematial Institute, AS CR, �Zitn�a 25, CZ-11567 Praha 1, Czeh RepublieInstitut f�ur Informatik, Albert-Ludwigs-Universit�at, Georges-K�ohler-Allee,79110 Freiburg, GermanyfFaultad de Cienias, Universidad Autonoma del Estado de Morelos,62251 Cuernavaa, Morelos, Mexio

AbstratThe following sheduling problem is studied: We are given a set of tasks with re-lease times, deadlines, and pro�t rates. The objetive is to determine a 1-proessorpreemptive shedule of the given tasks that maximizes the overall pro�t. In thestandard model, eah ompleted task brings pro�t, while non-ompleted tasks donot. In the metered model, a task brings pro�t proportional to the exeution timeeven if not ompleted.For the metered task model, we present an eÆient o�ine algorithm and improveboth the lower and upper bounds on the ompetitive ratio of online algorithms.Furthermore, we prove three lower bound results onerning resoure augmentationin both models.Key words: Sheduling, online algorithms, deadline, resoure augmentation.Preprint submitted to Elsevier Siene 7 February 2003

1 IntrodutionIn most task sheduling problems the objetive is to minimize some funtionrelated to the ompletion time. This approah is not useful in overloaded sys-tems, where the number of tasks and their proessing times exeed the apaityof the proessor and not all tasks an be ompleted. In suh systems, the goalis usually to maximize the number of exeuted tasks or, more generally, tomaximize their value or pro�t.The problem an be formalized as follows: we have a set of n tasks, eahtask j is spei�ed by its release time rj, deadline dj, proessing time pj, andweight wj representing its pro�t rate. Preemption is allowed, i.e., eah taskan be divided into any number of intervals, with arbitrary granularity. Theobjetive is to determine a 1-proessor preemptive shedule that maximizesthe overall pro�t. The pro�t gained from proessing task j an be de�ned intwo ways. In the standard model, eah ompleted task j brings pro�t wjpj,but non-ompleted tasks do not bring any pro�t. In the metered model, a taskwj exeuted for time t � pj brings pro�t wjt even if it is not ompleted.In many real-world appliations, algorithms for task sheduling are requiredto be online. This means that, at any given time, the sheduling algorithmneeds to hoose the task to proess based only on the spei�ation of the tasksthat have already been released. In general, due to the inomplete informationabout the input data, online algorithms annot ompute an optimal solution.It turns out, however, that for some sheduling problems it is possible toompute in an online fashion a solution that is within a onstant fator of theoptimum.An online algorithm that approximates the optimal solution within a fator Ris alled R-ompetitive. Online algorithms are also studied in the framework� Corresponding author.Email addresses: marek�s.ur.edu (Marek Chrobak), lea�id.a.il (LeahEpstein), jnoga�es.sun.edu (John Noga), sgall�math.as.z (Ji�r�� Sgall),vanstee�informatik.uni-freiburg.de (Rob van Stee), tihy�math.as.z(Tom�a�s Tih�y), nodari�servm.f.uaem.mx (Nodari Vakhania).1 Supported by NSF grant CCR-9988360.2 Supported by the Israel Siene Foundation, grant No. 250/01-1.3 Supported by Institute for Theoretial Computer Siene, Prague (projetLN00A056 of M�SMT �CR), grant 201/01/1195 of GA �CR, and grant A1019901of GA AV �CR.4 Supported by ooperative grant KONTAKT-ME476/CCR-9988360-001 fromM�SMT �CR and NSF.5 Supported by the Deutshe Forshungsgemeinshaft, Projet AL 464/3-1, and bythe European Community, Projets APPOL and APPOL II.6 Supported by NSF-CONACyT grant E120.1914.2

alled resoure augmentation. The idea is to allow an online algorithm to usemore resoures (a faster proessor or more proessors) and then to ompareits performane to the optimum solution (with no additional resoures). Forthe sheduling problems, we then ask what ompetitive ratio an be ahievedfor a given speed-up fator s, or what speed-up is neessary to ahieve 1-ompetitiveness. See [13,2℄ for more information on ompetitive analysis insheduling and other areas.The standard model. This problem has been extensively studied. Koren andShasha [9℄ give a (p�+1)2-ompetitive algorithm, where � = maxj wj=minj wjis alled the importane fator. This ratio is in fat optimal [1,9℄. Sine noonstant-ompetitive algorithms are possible in this model, it is natural tostudy this problem under the resoure augmentation framework. Kalyanasun-daram and Pruhs [6℄ present an online algorithm that uses a proessor withspeed 32 and ahieves a onstant ompetitive ratio. Lam and To [11℄ show anonline algorithm with speed-up O(log �) and ompetitive ratio 1. One naturalspeial ase of this problem is when the tasks are tight, that is, for eah jwe have dj = rj + pj. For this ase, Koo et al. [8℄ give a 1-ompetitive algo-rithm with speed-up O(1), and Lam et al. [10℄ show that in order to ahieve1-ompetitiveness the speed-up must be at least � � 1:618.The metered model. This version was introdued (in a di�erent terminol-ogy) by Chang and Yap [3℄ in the ontext of thinwire visualization. In theirappliation, a user viewing a low-resolution image moves the ursor aross thesreen, generating requests for higher resolution data at the ursor positions.Due to limited bandwidth not all requests an be fully satis�ed. However,even partial improvements of resolution may be bene�ial to the viewer. Thusthe pro�t represents overall quality of servie. Metered preemptive tasks alsoprovide a natural model for various deision making proesses where an entitywith limited resoures needs to hoose between engaging in several pro�tableativities. Chang and Yap proved that two online algorithms alled FirstFitand EndFit have ompetitive ratio 2. They also proved that no online algo-rithm an ahieve a ompetitive ratio better than 2(2�p2) � 1:17.Our results. We �rst fous on the metered pro�t model. In Setion 3, weonsider o�ine algorithms. We haraterize the struture of optimal solutionsand provide a polynomial time algorithm based on bipartite mathings andmaximal ows. This addresses a problem stated in [3℄.The online metered ase is studied in Setion 4 to 6. In Setion 4 we present analgorithm with ompetitive ratio e=(e� 1) � 1:5820. In Setion 5 we prove alower lower bound of p5�1 � 1:236 on the ompetitive ratio of algorithms forthis problem. These results improve both the lower and upper bounds from [3℄.(The algorithm FirstEndFit, onjetured in [3℄ to be 1:5-ompetitive, is only3

2-ompetitive, as we have shown in the onferene version of this paper [5℄.)In Setion 6 we study the resoure augmentation version of this problem, andprove that no online algorithm with onstant speed-up an be 1-ompetitive,neither in the metered pro�t model, nor in the standard model. In fat,we prove that the minimal speed-up needed to ahieve 1-ompetitiveness is
(log log �). Thus we disprove a onjeture from [8℄ by showing that the prob-lem with general deadlines is provably harder than the speial ase of tightdeadlines, and the onstant speed-up 1-ompetitive algorithm for tight tasksfrom [8℄ annot be extended to general tasks.Furthermore, we prove some lower bounds for the restrited ase of tight tasksin the standard model. We improve the lower bound from [10℄, by provingthat, in order to ahieve 1-ompetitiveness, an online algorithm needs speed-up at least 2. Our last result onerns the model where an online algorithm isallowed to use m proessors of speed 1, rather than a single faster proessor.For this ase we prove that the ompetitive ratio is
(mp�=m), even if all tasksare restrited to be tight. For tight tasks onstant speed-up is suÆient for1-ompetitiveness, so the lower bound shows that inreasing the speed of asingle proessor is more powerful than inreasing the number of proessors ofspeed 1.This paper extends the onferene version [5℄. The onferene version ontainsa 1:8-ompetitive algorithm for metered tasks whih alway shedules at mosttwo tasks. Our new e=(e � 1)-ompetitive algorithm is a natural extensionallowing to shedule more tasks onurrently. The same algorithm was alsoreently disovered by Chin and Fung [4℄ (independently of our work). Chinand Fung [4℄ also give a new lower bound of 1:25 for metered tasks.2 PreliminariesLet J = f1; 2; : : : ; ng be the given set of tasks, with task j spei�ed by thevalues (rj; dj; pj; wj), where rj is its release time, dj is the deadline, pj is theproessing time, and wj is the weight of task j representing its pro�t rate.(In the literature, wj is sometimes alled the value density, and the produtwjpj is alled the value of task j.) We assume minj rj = 0 and we denote byD = maxj dj the latest deadline. If rj � t < dj, then we say that task j isfeasible at time t.Shedules. We de�ne a shedule for J to be a measurable funtion S : R !J[f?g suh that, for eah j and t, jS�1(j)j � pj and S(t) 6= j for t =2 [rj; dj). Inthis de�nition, S(t) denotes the task that is sheduled at time t, and S(t) = ?4

if no task is sheduled. For a set X � R, jXj denotes the size (measure) of X.The pro�t of a shedule S depends on the model: In the standard model, thepro�t is the sum of the pro�ts of the ompleted tasks, that is pro�tS(J) =Pj wjpj, where the sum is taken over all j for whih jS�1(j)j = pj. In themetered model, even partially exeuted tasks ount, that is, the pro�t of theshedule S is pro�tS(J) = Pj wjjS�1(j)j. The optimal pro�t is pro�tOPT(J) =supS pro�tS(J). It is easy to see that this supremum is ahieved. Moreover,eah shedule an be transformed into a piee-wise onstant shedule withouthanging the total pro�t (see [3℄). The pro�t of a shedule generated by analgorithm A on the instane J is denoted by pro�tA(J).For the metered model, it is important to keep in mind that the optimumpro�t is not hanged if any task is divided into several tasks with the samerelease times, deadlines, and weights, and whose total proessing time is equalto the proessing time of the original task. (For this reason it is more naturalto de�ne the weight as the pro�t rate instead of the total pro�t.)For a shedule S, let doneS;j(t) = jS�1(j) \ [0; t)j be the amount of task jthat has been proessed in S by time t. We de�ne a task j to be ative in Sat time t if rj � t < dj and doneS;j(t) < pj. In other words, the ative tasksare those that are feasible at time t and have not been ompletely proessedbefore time t.We say that a shedule S is anonial if for any two times t1 < t2, if j2 =S(t2) 6= ?, then either rj2 > t1, or j1 = S(t1) 6= ? and dj1 � dj2. One wayto think about anonial shedules is this: at eah time t, if j is the earliest-deadline task among the ative tasks at time t, then we either proess j attime t, or disard j irrevoably so that it will never be proessed in the future.Any shedule S, inluding an optimal one, an be onverted into a anonialshedule as follows. Consider the instane J 0 onsisting of the portions of tasksthat are proessed in S. Reshedule the tasks in J 0 so that at eah time weshedule the ative task with the earliest deadline. Using a standard exhangeargument, it is easy to verify that all tasks are fully proessed.Online algorithms. A sheduling algorithm A is online if, at any time t, itsshedule depends only on the tasks that have been released before or at time t.An online algorithm A is alled R-ompetitive if pro�tA(J) � pro�tOPT(J)=Rfor every instane J . The ompetitive ratio of A is the smallest R for whih Ais R-ompetitive.Timesharing and randomizaton. The online algorithms are easier to for-mulate if we allow timesharing of tasks. This means that several tasks maybe proessed simultaneously at appropriately redued speeds. As explainedbelow, this does not hange the power of the model of metered tasks.5

Formally, a generalized shedule is a funtion V that, for eah task j and timet 2 [0; D), spei�es the speed V (j; t) at whih we perform task j at time t. Weimpose the following restritions on V (j; t):Xj V (j; t) � 1; 1Z0 V (j; t) dt � pj; and V (j; t) = 0 for t =2 [rj; dj)The �rst ondition states that the sum of the proessing speeds assigned todi�erent tasks annot exeed the proessor speed, and the seond onditionstates that the total time spent on exeuting task j does not exeed pj.The pro�t of a generalized shedule V ispro�tV (J) = Xj wj 1Z0 V (j; t) dt = 1Z0 Xj wjV (j; t) dt:Clearly, this de�nition generalizes the previous one. Both de�nitions are equiv-alent in the o�ine ase.In the online ase, any generalized shedule V an be transformed into a shed-ule S whih simulates the time-sharing in V by alternating the tasks. It is easyto see that if the tasks are alternated with suÆiently high frequeny (om-pared to the proessing times), this transformation inreases the ompetitiveratio only by an arbitrarily small " > 0. So both de�nitions are equivalent inthe online ase as well, in the sense that the in�ma of ahievable ompetitiveratios are the same. Throughout the paper we slightly abuse terminology andrefer to the funtion V simply as a shedule.It is also easy to see that randomized (online) algorithms are no more powerfulthan deterministi ones for metered tasks. Any randomized algorithm an betransformed into a deterministi one by generating a generalized shedule inwhih at a given time, eah task is proessed with speed equal to the proba-bility that the randomized algorithm shedules it. It is easy to see that anysheduled task is ative, sine when the randomized algorithm shedules itwith a non-zero probability, it is not ompleted and feasible at the given time.Moreover, the pro�t of the deterministi algorithm is exatly equal to theexpeted pro�t of the randomized algorithm. (Note that this fails in the stan-dard model: The randomized algorithm may omplete a task with probability1=2, ahieving one half of its pro�t on average, in whih ase the deterministialgorithm shedules only a part of the task and ahieves no pro�t.)Resoure augmentation. As mentioned in the introdution, we also studytwo variants of the problem where the online algorithms are given more re-soures than the optimal shedule used as the basis of omparison. In the �rst6

variant, with speed-up s, the online algorithm uses a single mahine of speeds � 1. A shedule for J is a measurable funtion S : R ! J [f?g suh that,for eah j and t, jS�1(j)j � pj=s and S(t) 6= j for t =2 [rj; dj). A pro�t of ajob is wjsjS�1(j)j. In the standard model, a job is ompleted if sjS�1(j)j = pjand the pro�t of the shedule is the sum of the pro�ts of all ompleted jobs.In the metered model, the pro�t is the sum of pro�ts of all jobs, even thoseonly partially ompleted.In the seond variant, the online algorithm uses m proessors of speed 1.A shedule for J is then given by an m-tuple of measurable funtions Si :R ! J [f?g, i = 1; : : : ; m, suh that Pmi=1 jS�1i (j)j � pj for eah j and t,Si(t) 6= j for eah i and t =2 [rj; dj), and, if Si(t) = Si0(t) for some j and t, thenSi(t) = Si0(t) = ? (i.e., no job is sheduled on two mahines at the same time).We onsider only the standard model for this variant. A job is ompleted ifPmi=1 jS�1i (j)j = pj. If j is ompleted, its pro�t is wjpj, and otherwise it's 0.The total pro�t is the sum of the pro�ts of all ompleted jobs.In both variants, we ompare a shedule generated by the online algorithmthat uses additional resoures to the optimal shedule with no speed-up andno additional mahines. We are mainly interested in 1-ompetitive algorithms,that is, in algorithms that always ahieve at least the optimal pro�t. (Due tothe additional resoures suh an algorithm an ahieve a larger pro�t on someinstanes.)3 An O�ine Algorithm for Metered TasksIn this setion we give an eÆient algorithm for omputing the optimal solutionfor metered tasks, addressing a problem posed in [3℄. First we observe thatthe problem an be ast as a linear programming problem, and thus it an besolved in polynomial time. The main goal of this setion is to present a moreeÆient algorithm based on bipartite mathings and ows.The release times and deadlines partition the range [0; D) into 2n�1 intervalsthat we all stages. We number the stages 1; 2; : : : ; 2n� 1. If stage s is [a; b),we say that task j is feasible in stage s if it is feasible at any time t 2 [a; b).Linear programming. By `s we denote the length of stage s. Let Æj;s = pjif j is feasible in s and 0 otherwise. With eah stage s and eah task j weassoiate the variable xj;s whose value is the amount of task j proessed instage s. Any shedule an be desribed by the values of the xj;s, sine theordering of the tasks sheduled within a stage is arbitrary. Then the linearprogram is: 7

maximize Pj;swjxj;ss.t. Ps xj;s � pj 8jPj xj;s � `s 8sxj;s � Æj;s 8j; sxj;s � 0 8j; s (1)
Thus we an ompute an optimal shedule using linear programming, see, e.g.,[7,12℄. This is not fully satisfatory, sine the running time of polynomial-timealgorithms for linear programming depends on the size of the numbers oninput.Mathings and ows. Now we present a more eÆient algorithm, whoserunning time is a polynomial funtion of n alone (assuming unit time for arith-meti operations and omparisons of the real numbers representing times).Before giving the algorithm, we prove the following property: any optimalshedule, restrited to a subset of jobs with weights larger than some threshold,is an optimal shedule for this subset of jobs. Thus, perhaps surprisingly, theset of optimal shedules depends only on the ordering of the weights but noton their values, and every optimal shedule ontains an optimal shedule forany instane restrited to heavy tasks. In partiular, all the optimal shedulesinlude the same portion of the tasks of any given weight.We prove this property �rst for the disrete version and then disretize andtake a limit for the general ase.Order the tasks in an instane J so that w1 � w2 � � � � � wn. Without lossof generality, wn > 0. For onveniene, write wn+1 = 0. Let Jk denote thesub-instane onsisting of tasks 1; : : : ; k. Given a shedule S for J , let Sk bethe restrition of S to Jk. In partiular, Sn = S. Let busy(S) = jS�1(J)j bethe total time when any task is sheduled in S.Assume now that all the release times and deadlines are integers and that weonly have unit tasks (with pj = 1). Reall that the �rst release time is 0 andthe latest deadline is D. In this senario preemptions are not neessary in theo�ine ase. Construt a bipartite graph G with verties X = fx1; : : : ; xngorresponding to tasks and Y = fy1; : : : ; yDg orresponding to the unit timeslots. If task j is feasible in time unit t then onnet xj and yt with an edge ofweight wj. Let Gk denote the subgraph of G indued by fx1; : : : ; xkg[Y . Anyshedule de�nes a mathing inG and any mathing is a shedule. So omputingan optimal shedule is equivalent to omputing a maximum-weight mathing.8

Lemma 3.1 (a) There exists a maximum-weight mathing M in G suh that,for eah k = 1; : : : ; n, M ontains a maximum-ardinality mathing of Gk.(b) If M is any maximum-weight mathing in G then, for eah k = 1; : : : ; nsuh that wk > wk+1, M ontains a maximum-ardinality mathing of Gk.Proof: Let M be a maximum-weight mathing in G. Denote by Mk the sub-mathing ofM restrited to Gk, and suppose that M̂ is a mathing in Gk withardinality larger than Mk. Consider the symmetri di�erene of Mk and M̂ .It onsists of disjoint alternating yles and paths. Moreover, it ontains atleast one odd-length alternating path P with more edges from M̂ than fromMk. Let y be the endpoint of P in Y . Sine the weights of the edges dependonly on the endpoints in X, the onseutive pairs of adjaent edges on P haveequal weights (1st and 2nd, 3rd and 4th, et., numbering from y), and the lastedge is from M̂ and has weight wp � wk. If y were not mathed inM , we ouldswap the edges on P in M (i.e., remove from M the edges in M \P =Mk \Pand add the edges in M̂ \ P), reating a mathing with weight w(M) + wp,ontraditing the maximality ofM . Thus y has to be mathed inM . Then themathing edge ontaining y has weight wl, for some l > k, and thus wp > wl.Let M 0 be the mathing obtained from M by unmathing y and swappingthe edges on P . We have w(M 0) = w(M) + wp � wl � w(M). This implies(b): if wk > wk+1 then wl < wp and w(M 0) > w(M), whih ontradits themaximality of M . To obtain (a), modify all the weights to w0i = wi � i", for" > 0. For a suÆiently small ", the maximality of any mathing is preservedand all the weights are distint. Using (b) with the new weights, it followsthat any maximum-weight mathing satis�es (a) with the original weights. 2For a general instane, round eah proessing time, release time, and deadlineto the nearest multiple of " > 0. Taking a limit for "! 0, Lemma 3.1 impliesthe following theorem.Theorem 3.2 (a) There exists an optimal shedule S for J suh that, foreah k = 1; : : : ; n, Sk is optimal for Jk and busy(Sk) is maximized.(b) If S is any optimal shedule then, for eah k = 1; : : : ; n suh that wk >wk+1, Sk is optimal for Jk and busy(Sk) is maximized.Proof: Disretize the range [0; D) into small intervals of length " > 0, round-ing the release times and deadlines to the nearest multiple of ". Replae eahproessing time pj is replaed by the nearest multiple of ". Let J" be the result-ing disrete instane. Eah shedule an be replaed by a anonial shedulewithout hanging busy(Sk). A anonial shedule S for J onsists of O(n2)intervals, it is easy to see that there are optimal shedules S" for eah J", thatonverge to S with " ! 0. By Lemma 3.1 and taking the limit, the theoremfollows. 2 9

Algorithm Opt.(i) Construt a ow network H with soure s, sink t, and verties xj for eahtask j and zi for eah stage i. The edges are: (s; xj) for eah task j, (xj; zi)for eah stage i and eah task j feasible in stage i, and (zi; t) for eah stagei. The apaity of eah edge (xj; zi) is pj and the apaity of eah edge (zi; t)is `i, the length of stage i. The apaities of edges (s; xj) are initialized to0. Initialize f 00 to be the zero ow.(ii) For j = 1; : : : ; n, do the following:Set the apaity of (s; xj) to pj.Compute the maximal ow, denote it fj. Let Æj = jfjj�jfj�1j be the inreasein the ow value.Set the apaity of (s; xj) to Æj. Reompute the maximal ow, denote it f 0j.The resulting maximum ow f 0n de�nes a shedule: we take fn(xj; zi) to bethe amount of task j sheduled during stage i. Theorem 3.2 implies thatjfjj = jf 0jj and after iteration j, the ow on (s; xj) will remain Æj until the end.Thus Algorithm Opt omputes step by step busy(Sj) = jfjj, j = 1; : : : ; n, foran optimal shedule S. Therefore f 0n de�nes an optimal shedule. The runningtime of Algorithm Opt is no worse than O(n) times the omplexity of themaximum ow, whih is not worse than O(n4).4 A Competitive Online Algorithm for Metered TasksWe now present our e=(e � 1)-ompetitive online algorithm. Chang and Yapintrodued a greedy algorithm FirstFit that always proesses the heaviesttask. The drawbak of FirstFit is that it may shedule a task with a distantdeadline, disarding an only slightly less pro�table task with a tight deadline.To avoid this, our algorithm Mixed shedules onurrently several tasks: theheaviest task, the heaviest task among those with an earlier deadline, and soon, up to a task with earliest deadline among those with weight at least 1=eof the largest weight.Algorithm Mixed. Construt a sequene of jobs h1, . . . , hk as follows. Leth1 be an ative task j with maximum wj (break ties arbitrarily). Given h1,. . . , hi, hoose the next job hi+1 as the heaviest ative job j with deadlinedj < dhi (breaking ties arbitrarily); if there is no suh job or the job has weightwj � wh1=e, set k = i and �nish the onstrution. Denote the weights of thehosen jobs vi = whi and set vk+1 = v1=e. Shedule all jobs hi, i = 1; : : : ; k,with speed V (hi; t) = ln vi � ln vi+1. For j 62 fh1; : : : ; hkg set V (j; t) = 0.At any given time, v1 � v2 � : : : � vk � vk+1, thus V (hi; t) � 0, and the10

sum of speeds of all sheduled jobs is Pki=1(ln vi � ln vi+1) = ln v1 � ln vk+1 =ln v1 � ln(v1=e) = 1. Thus the shedule is well-de�ned. Note also that Mixedkeeps proessing the same tasks at the same speeds in-between any of followingat most 2n events: task arrivals, deadlines or task ompletions.Theorem 4.1 Algorithm Mixed has ompetitive ratio e=(e� 1) � 1:5820.Proof: Let V be the shedule generated byMixed and let S be some anonialoptimal shedule.We devise an appropriate harging sheme, desribed by a funtion C : R ! Rwhih maps eah time in S to a time in V . The intention is that any pro�tahieved at time t in S is \harged" to the time C(t) in V . We then arguethat eah time u in V is harged at most e=(e � 1) times the pro�t in V attime u. Further, all pro�t from S is harged. These two fats imply e=(e� 1)-ompetitiveness. Sine the \pro�t at time t" is in�nitesimally small, in theformal proof we need to express our argument in terms of \harged pro�trates". We de�ne another funtion F : R ! [0; 1℄ with the intended meaningthat F (t) is the fration of pro�t at time t in S harged to time C(t) in V .Consider a time t, and let j = S(t). If doneV;j(t) � doneS;j(t), de�ne C(t) = tand F (t) = 1, i.e., the harged pro�t rate of j at time t is vj. Otherwise, letC(t) = u < t, where u is the maximum time suh that doneV;j(u) = doneS;j(t),and F (t) = V (j; u); i.e., the harged pro�t rate of j at time u is vjV (j; u).Choosing u as maximal suh time implies that V (j; u) > 0. It is easy to hekthat the total harged pro�t (i.e., the harged pro�t rate integrated over thewhole shedule V) equals the total pro�t of S.Let j be the task sheduled in S at time t. Let h1, . . . , hk be the taskssheduled in V at time t, as hosen by Mixed. Denote their weights vi = whiand set vk+1 = v1=e. The set C�1(t) onsists of at most k+1 points, t and themaximal times t1, . . . , tk suh that doneV;hi(t) = doneS;hi(ti), if suh ti existsand satis�es ti > t. If C(t) = t then the harged pro�t rate of j at t is wj.If ti is present in C�1(t) then the harged pro�t rate of hi at t is V (hi; t)vi.The ombined harged pro�t rate at t is the sum of these ontributions overall points in C�1(t). We show that it is at most e=(e� 1) times the pro�t rateof V at time t. The theorem then follows by integrating over all times t.Case 1: C(t) < t. Then the ombined harged pro�t rate at t is at most thepro�t rate of V at t (it is equal if all ti are present in C�1(t)).Case 2: C(t) = t. Consider any i suh that the point ti is present in C�1(t),we show that wj � vi+1. Both tasks j and hi are ative at time t both in Vand S: both are released before t, as one of V and S shedules shedules themat t; both are sheduled at t or later in S, so they are not ompleted in S attime t; hi is sheduled in V , so it is not ompleted; �nally j is not ompleted11

in V by de�nition of C and C(t) = t. Sine S is a anonial shedule, wehave dj � dhi. If wj > vi+1, Mixed would hoose j (or a job with even largerweight) as hi+1 (note that this holds even for i = k). It follows that wj � vi+1.Let z be the largest index (in f1; : : : ; k+1g) suh that wj � vz. Sine j is ativeat t in V , it also follows that wj � v1, and thus suh a z exists. By the previousparagraph, only j and h1, . . . , hz�1 ontribute to the harged pro�t rate at t.Thus the ombined harged pro�t rate at t is at most X = vz+Pz�1i=1 V (hi; t)vi,using also wj � vz. The pro�t rate of V at t is equal to Y = Pki=1 V (hi; t)vi.We need to show that X � Y � e=(e� 1), or equivalently X � Y � Y=(e� 1).First we derive an auxiliary inequality for any t = 1; : : : ; k:kXi=t V (hi; t)vi= kXi=t ln viZln vi+1 vi dx � kXi=t ln viZln vi+1 ex dx= ln vtZln vk+1 ex dx = vt � vk+1 = vt � v1=e:As a speial ase for t = 1 we have Y � v1(1 � 1=e) = v1(e � 1)=e. Now wehaveX � Y = vz � kXi=z V (hi; t)vi � vz � (vz � v1=e) = v1=e � Y=(e� 1):To see that the bound of e=(e� 1) on the ompetitive ratio ofMixed is tight,onsider a small " > 0 and an instane with jobs (0; 1 � i"2; 1; 1 � i"), fori = 0; 1; : : : ; b1=". The deadlines are all very lose to 1 (they serve only tobreak ties in the algorithm in the desired way), and the weights over withhigh density the interval [0; 1℄. Thus it is easy to hek that, as the " tends to0, the pro�t of Mixed onverges to 1� 1=e, while the optimum is e. 25 A Lower Bound for Metered TasksThe idea of the lower bound we prove now is as follows. At eah integral timethe algorithm has a hoie of a job with unit proessing time and tight deadlineand another unit job with higher weight and longer deadline. If the algorithmshedules at most one half of the tight job, the sequene ends, and the weightsare set so that in this ase the ompetitive ratio is too large. Otherwise thesequene ontinues for a suÆiently long time. During this time the weightsinrease exponentially and in the limit the ompetitive ratio is large, too. This12

lower bound was reently improved by Chin and Fung [4℄ to 1.25, using ananalysis based on a random distribution of similar input instanes.Theorem 5.1 The ompetitive ratio of any online algorithm for shedulingmetered tasks is at least p5� 1 � 1:236.Proof: Fix an online algorithm A and " > 0 arbitrarily small. We show thatthe ompetitive ratio of A is at least p5� 1� ", whih proves the theorem.Let � = p5 � 2 and let � = (p5 + 1)=2 be the golden ratio. De�ne thesequene fvig1i=0 by v0 = 1, v1 = �+ ", and vi+1 = (vi� vi�1)=� for i > 1. Wesolve the reurrene: � + 1 and � are the roots of the harateristi equation�x2 � x+ 1 = 0, and we have vi = (1� ")�i + "(�+ 1)i.The adversary strategy is this: Pik some large integer n. For eah time i =0; 1; 2; : : : the following two tasks arrivetask i: (i; i + 1; 1; vi); task i0: (i; i+ 2; 1; vi+1):If there is an integer time 1 � j < n when A has ompleted at most half of taskj�1, the adversary terminates the sequene (prior to releasing tasks j and j 0).If this ase ours, A earns at most pro�tA(J) � 12v0+v1+v2+ � � �+vj�1+vj,and the optimal pro�t is pro�tOPT(J) = (v1+v2+ � � �+vj�1+vj)+vj�1. Usingthe reurrene and vj�1 � 1 (in the last inequality) we obtainpro�tOPTpro�tA(J) � (1 + 2Pji=1 vi) + 2vj�1 � 11 + 2Pji=1 vi=1 + 2vj�1 � 11 + 2v1 + 2Pji=2 vi�1�vi�2�=1 + �(2vj�1 � 1)� + 2�v1 + 2vj�1 � 2= 1 + �(2vj�1 � 1)2"� + (2vj�1 � 1) > 1 + � � ":Otherwise, the adversary issues all tasks up to time n � 1, and at time n hereleases task n only. Now pro�tA(J) � 12v0 + v1 + v2 + : : : + vn�1 + 32vn andpro�tOPT(J) = v1 + v2 + : : : + vn�1 + 2vn. Using the reurrene and lettingn!1pro�tOPTpro�tA(J) = 2vn + 2Pni=1 vi1 + vn + 2Pni=1 vi = 1 + vn � 11 + v1 + vn + 2vn�1�1��! 1 + �+ 1(�+ 1) + 2� = 1 + �:13

In both ases, the ompetitive ratio is at least 1 + � � ", as laimed. 26 Lower Bounds for Resoure AugmentationIn this setion we prove several lower bounds on resoure augmentation. Re-all the de�nition of the importane fator � = maxj wj=minj wj. We startwith a lower bound showing that there exists no 1-ompetitive speed-up O(1)algorithm, both for metered and standard tasks. This disproves a onjetureof Koo et al. [8℄; it is interesting to note in this ontext that all the tasks usedin the lower bound are tight or have laxity 2, i.e., dj � rj = 2pj.Theorem 6.1 Both in the metered and standard pro�t model, any online 1-ompetitive algorithm has speedup at least
(log log �), where � is the impor-tane fator. In partiular, there is no onstant speed-up 1-ompetitive algo-rithm.Proof: Fix an integer m. We onstrut an instane suh that any online 1-ompetitive algorithm needs speed-up m=2. See Figure 1 for an illustration.All tasks ending at the same deadline t have the same pro�t rate h(t) = (2m)t.The tasks are grouped into m + 1 lasses numbered k = 0; : : : ; m. For k = 0,the tasks in lass 0 are(i; i+ 1; 1; h(i+ 1)); i = 0; : : : ; 2m � 1:For k = 1; : : : ; m, the tasks in lass k are(i2k; (i+ 1)2k; 2k�1; h((i+ 1)2k)); i = 0; : : : ; 2m�k � 1:For eah time t onsider the sub-instane onsisting of the tasks that arereleased before t. We laim that the optimal solution of this sub-instaneshedules exatly all the tasks with deadline t or later. To prove this laim, notethat in the sub-instane, there is exatly one task in eah lass with deadlineat least t. All these task an be sheduled from time 0 to 2m, ompletely �llingthe apaity of the proessor at any time: Shedule eah suh job j in lasses1 to m in that half of the interval [rj; dj) whih does not ontain the interval[t � 1; t); the interval [t � 1; t) is used by the job in lass 0. Sine all theother tasks in the sub-instane have smaller pro�t rate, this gives the optimalsolution (both for metered and standard tasks).The weights inrease so fast that the pro�t rate h(t) is at least the total pro�tof all the tasks with deadlines before t: The total proessing time of all tasks14

h(8)

h(8)

h(1)

h(2)

h(3)

h(4)

h(5)

h(6)

h(7)

h(8)

h(8)

h(6)h(2)

h(4)

h(4)

0 1 4 62 3 5 7 8Fig. 1. The instane for m = 3. Solid lines represent feasibility ranges, dotted linesrepresent proessing times, and the pro�t rates h(x) are shown above these lines.with deadline equal to t� 1 is at most 2m�1, thus their total pro�t is at most2m�1h(t� 1). By indution, h(t� 1) bounds the total pro�t of all tasks withdeadline before t� 1. Thus the total pro�t of all tasks with deadline before tis at most (2m�1 + 1)h(t� 1) � 2mh(t� 1) = h(t).The previous onsiderations show that to ahieve optimal pro�t, the on-linealgorithm has to ompletely exeute all the tasks with deadline t, with theexeption of tasks or their parts (in metered model) with proessing timebounded by 1 (sine only that muh an be replaed by the hypotheti pro�tof tasks with earlier deadlines). Sine this holds for any time t, all the tasksmust be ompleted, with a possible exeption of tasks with total proessingtime 2m. The total proessing time of all tasks is (m + 2)2m�1, so tasks ortheir parts of total length m2m�1 have to be exeuted by time 2m. It followsthat A must run at speed at least m=2.Sine the deadlines range from 1 to 2m, the importane ratio is � = (2m)2m�1and the lower bound is m=2 =
(log log �). 2Theorem 6.2 In the standard pro�t model, there is no online 1-ompetitivealgorithm with speed-up s < 2 for sheduling tight tasks.Proof: Let A be an online 1-ompetitive algorithm. We show an adversarystrategy that, for any given n, fores A to run at speed 2�1=n. The adversaryhooses tasks from among 2n�1 tasks de�ned as follows. Task 0 is (0; n; n; 1).For i = 1; : : : ; n� 1, task i is (i� 1; i; 1; 1) and task i0 is (i; n; n� i; n=(n� i)).The adversary strategy is this: issue tasks 0; 1; 2; :::, as long as tasks 1; 2; : : : ; iare fully proessed by A by time i. If A fails to fully proess task i, theadversary issues task i0 and halts. If this happens, the instane ontains tasks0; 1; : : : ; i; i0 whose optimal pro�t is is n + i. To gain this pro�t A needs toproess all tasks other than i. Their total length is 2n� 1, so A's speed must15

be at least 2� 1=n.If A proesses all tasks 1; :::; n � 1, the instane is 0; 1; : : : ; n � 1 and itsmaximum pro�t is n. To ahieve this pro�t, A must also proess task 0. Oneagain, this means that A's speed is at least 2� 1=n. 2Theorem 6.3 In the standard pro�t model, any online algorithm with m pro-essors for sheduling tight tasks has a ompetitive ratio of
(mp�=m) (againsta 1-proessor optimum), where � is the importane ratio.Proof: Let M be large onstant. Suppose A has m mahines. The adversaryhooses tasks from m+1 task lasses numbered 0; 1; : : : ; m. The tasks in lassi have all equal proessing time pj = M2i, pro�t rate wj = M�i, and pro�twjpj = M i; their release times are aM2i, for a = 0; 1; : : : ;M2m�2i � 1. Theimportane ratio is � = Mm.The adversary strategy is as follows. Sine the tasks are tight and we onsiderthe standard model, we an assume that one A fails to run a task, it neverstarts it again. If A stops exeuting a task j at time t (where t ould be dj)then from time t+1 until the deadline of j no tasks from lasses 0; 1; : : : ; j�1are released. (In other words, a task arrives if at its release time all the ativetasks are running; note that these tasks are only from higher lasses.) It followsthat at eah time there exists at least one task that was released but is notbeing exeuted by A. At time t, let jt be suh a task from the smallest lass.Let P be the total pro�t of all the dropped tasks, i.e., tasks not �nishedin A. We prove that (i) the optimal solution shedules tasks with pro�t atleast P=(m+ 1), and (ii) the algorithm A shedules tasks with pro�t at most2P=(M � 1). The bound on the ompetitive ratio follows.The proof of (i) is trivial: The dropped tasks in eah lass are disjoint, so thedropped tasks in one of the lasses have weight at least P=(m+ 1).Now we prove (ii). If a task j running in A at some time t is from a lower-numbered lass than jt, we assign it to jt. A task exeuted byA an be assignedto none, one or even more dropped tasks (as jt may hange). Any running tasknot assigned at all is always from a higher lass than the urrent jt. At eahtime, the total pro�t rate of all suh tasks is at most 1=(M�1) fration of thepro�t rate of jt. Thus the overall pro�t of all unassigned ompleted tasks is atmost P=(M � 1). Now onsider all the exeuted tasks assigned to a partiulardropped task j from lass i. From the de�nition of the sequene it follows thatthere is at most one suh task from eah lass i0 < i. Thus their total pro�t(not pro�t rate) is at most 1=(M � 1) fration of the pro�t of j. Hene theoverall pro�t of all assigned ompleted tasks is at most P=(M � 1), and (ii)follows. 2 16

7 Final CommentsAs we have seen, the model of metered tasks has very nie mathematialproperties, whih also makes it very attrative. The main remaining openproblem is to determine the best ompetitive ratio for the metered pro�tmodel. The best urrent bounds show that this ratio between 1:25 and e=(e�1) � 1:5820, but the gap between these two bounds is still wide. Similarly,in the standard model, we know that the minimum speedup needed to obtaina 1-ompetitive algorithm is between
(log log �) and O(log �). It would beinteresting to determine the optimal speedup for this problem.Referenes[1℄ Sanjoy Baruah, Gilad Koren, Deao Mao, Bud Mishra, Arvind Raghunathan,Louis Rosier, Dennis Shasha, and Fuxing Wang. On the ompetitiveness ofon-line real-time task sheduling. Real-Time Systems, 4:125{144, 1992.[2℄ Allan Borodin and Ran El-Yaniv. Online Computation and CompetitiveAnalysis. Cambridge University Press, 1998.[3℄ Ee-Chien Chang and Chee Yap. Competitive online sheduling with levelof servie. In Pro. 7th Annual International Computing and CombinatorisConferene, volume 2108 of Leture Notes in Computer Siene, pages 453{462. Springer, 2001.[4℄ Franis Y. L. Chin and Stanley P. Y. Fung On-line sheduling with partial jobvalues: Does timesharing or randomization help? Manusript, 2002. To appearin Algorithmia.[5℄ Marek Chrobak, Leah Epstein, John Noga, Ji�r�� Sgall, Rob van Stee, Tom�a�sTih�y, and Nodari Vakhania. Preemptive sheduling in overloaded systems.In Pro. of the 28th International Colloquium on Automata, Languages, andProgramming, Leture Notes in Comput. Si. 2380, pages 800{811. Springer-Verlag, 2002.[6℄ Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as lairvoyane.Journal of the ACM, 47(4):214{221, 2000.[7℄ Howard Karlo�. Linear Programming. Birkh�auser, Boston, 1991.[8℄ Chiu-Yuen Koo, Tak-Wah Lam, Tsuen-Wan Ngan, and Kar-Keung To. On-line sheduling with tight deadlines. In Pro. 26th Symp. on MathematialFoundations of Computer Siene, volume 2136 of Leture Notes in ComputerSiene, pages 464{473, 2001.[9℄ G. Koren and D. Shasha. dover: an optimal on-line sheduling algorithmfor overloaded uniproessor real-time systems. SIAM Journal on Computing,24:318{339, 1995. 17

[10℄ Tak-Wah Lam, Tsuen-Wan Ngan, and Ker-Keung To. On the speed requirementfor optimal deadline sheduling in overloaded systems. In Pro. 15thInternational Parallel and Distributed Proessing Symposium, page 202, 2001.[11℄ Tak-Wah Lam and Ker-Keung To. Trade-o�s between speed and proessor inhard-deadline sheduling. In Pro. 10th Symp. on Disrete Algorithms, pages755{764, 1999.[12℄ C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for LinearOptimization: An Interior Point Approah. John Wiley and Sons, Chihester,1997.[13℄ Ji�r�� Sgall. Online sheduling. In Online Algorithms: The State of Art, pages196{227. Springer-Verlag, 1998.

18

