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Abstra
tThe following s
heduling problem is studied: We are given a set of tasks with re-lease times, deadlines, and pro�t rates. The obje
tive is to determine a 1-pro
essorpreemptive s
hedule of the given tasks that maximizes the overall pro�t. In thestandard model, ea
h 
ompleted task brings pro�t, while non-
ompleted tasks donot. In the metered model, a task brings pro�t proportional to the exe
ution timeeven if not 
ompleted.For the metered task model, we present an eÆ
ient o�ine algorithm and improveboth the lower and upper bounds on the 
ompetitive ratio of online algorithms.Furthermore, we prove three lower bound results 
on
erning resour
e augmentationin both models.Key words: S
heduling, online algorithms, deadline, resour
e augmentation.Preprint submitted to Elsevier S
ien
e 7 February 2003



1 Introdu
tionIn most task s
heduling problems the obje
tive is to minimize some fun
tionrelated to the 
ompletion time. This approa
h is not useful in overloaded sys-tems, where the number of tasks and their pro
essing times ex
eed the 
apa
ityof the pro
essor and not all tasks 
an be 
ompleted. In su
h systems, the goalis usually to maximize the number of exe
uted tasks or, more generally, tomaximize their value or pro�t.The problem 
an be formalized as follows: we have a set of n tasks, ea
htask j is spe
i�ed by its release time rj, deadline dj, pro
essing time pj, andweight wj representing its pro�t rate. Preemption is allowed, i.e., ea
h task
an be divided into any number of intervals, with arbitrary granularity. Theobje
tive is to determine a 1-pro
essor preemptive s
hedule that maximizesthe overall pro�t. The pro�t gained from pro
essing task j 
an be de�ned intwo ways. In the standard model, ea
h 
ompleted task j brings pro�t wjpj,but non-
ompleted tasks do not bring any pro�t. In the metered model, a taskwj exe
uted for time t � pj brings pro�t wjt even if it is not 
ompleted.In many real-world appli
ations, algorithms for task s
heduling are requiredto be online. This means that, at any given time, the s
heduling algorithmneeds to 
hoose the task to pro
ess based only on the spe
i�
ation of the tasksthat have already been released. In general, due to the in
omplete informationabout the input data, online algorithms 
annot 
ompute an optimal solution.It turns out, however, that for some s
heduling problems it is possible to
ompute in an online fashion a solution that is within a 
onstant fa
tor of theoptimum.An online algorithm that approximates the optimal solution within a fa
tor Ris 
alled R-
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alled resour
e augmentation. The idea is to allow an online algorithm to usemore resour
es (a faster pro
essor or more pro
essors) and then to 
ompareits performan
e to the optimum solution (with no additional resour
es). Forthe s
heduling problems, we then ask what 
ompetitive ratio 
an be a
hievedfor a given speed-up fa
tor s, or what speed-up is ne
essary to a
hieve 1-
ompetitiveness. See [13,2℄ for more information on 
ompetitive analysis ins
heduling and other areas.The standard model. This problem has been extensively studied. Koren andShasha [9℄ give a (p�+1)2-
ompetitive algorithm, where � = maxj wj=minj wjis 
alled the importan
e fa
tor. This ratio is in fa
t optimal [1,9℄. Sin
e no
onstant-
ompetitive algorithms are possible in this model, it is natural tostudy this problem under the resour
e augmentation framework. Kalyanasun-daram and Pruhs [6℄ present an online algorithm that uses a pro
essor withspeed 32 and a
hieves a 
onstant 
ompetitive ratio. Lam and To [11℄ show anonline algorithm with speed-up O(log �) and 
ompetitive ratio 1. One naturalspe
ial 
ase of this problem is when the tasks are tight, that is, for ea
h jwe have dj = rj + pj. For this 
ase, Koo et al. [8℄ give a 1-
ompetitive algo-rithm with speed-up O(1), and Lam et al. [10℄ show that in order to a
hieve1-
ompetitiveness the speed-up must be at least � � 1:618.The metered model. This version was introdu
ed (in a di�erent terminol-ogy) by Chang and Yap [3℄ in the 
ontext of thinwire visualization. In theirappli
ation, a user viewing a low-resolution image moves the 
ursor a
ross thes
reen, generating requests for higher resolution data at the 
ursor positions.Due to limited bandwidth not all requests 
an be fully satis�ed. However,even partial improvements of resolution may be bene�
ial to the viewer. Thusthe pro�t represents overall quality of servi
e. Metered preemptive tasks alsoprovide a natural model for various de
ision making pro
esses where an entitywith limited resour
es needs to 
hoose between engaging in several pro�tablea
tivities. Chang and Yap proved that two online algorithms 
alled FirstFitand EndFit have 
ompetitive ratio 2. They also proved that no online algo-rithm 
an a
hieve a 
ompetitive ratio better than 2(2�p2) � 1:17.Our results. We �rst fo
us on the metered pro�t model. In Se
tion 3, we
onsider o�ine algorithms. We 
hara
terize the stru
ture of optimal solutionsand provide a polynomial time algorithm based on bipartite mat
hings andmaximal 
ows. This addresses a problem stated in [3℄.The online metered 
ase is studied in Se
tion 4 to 6. In Se
tion 4 we present analgorithm with 
ompetitive ratio e=(e� 1) � 1:5820. In Se
tion 5 we prove alower lower bound of p5�1 � 1:236 on the 
ompetitive ratio of algorithms forthis problem. These results improve both the lower and upper bounds from [3℄.(The algorithm FirstEndFit, 
onje
tured in [3℄ to be 1:5-
ompetitive, is only3



2-
ompetitive, as we have shown in the 
onferen
e version of this paper [5℄.)In Se
tion 6 we study the resour
e augmentation version of this problem, andprove that no online algorithm with 
onstant speed-up 
an be 1-
ompetitive,neither in the metered pro�t model, nor in the standard model. In fa
t,we prove that the minimal speed-up needed to a
hieve 1-
ompetitiveness is
(log log �). Thus we disprove a 
onje
ture from [8℄ by showing that the prob-lem with general deadlines is provably harder than the spe
ial 
ase of tightdeadlines, and the 
onstant speed-up 1-
ompetitive algorithm for tight tasksfrom [8℄ 
annot be extended to general tasks.Furthermore, we prove some lower bounds for the restri
ted 
ase of tight tasksin the standard model. We improve the lower bound from [10℄, by provingthat, in order to a
hieve 1-
ompetitiveness, an online algorithm needs speed-up at least 2. Our last result 
on
erns the model where an online algorithm isallowed to use m pro
essors of speed 1, rather than a single faster pro
essor.For this 
ase we prove that the 
ompetitive ratio is 
( mp�=m), even if all tasksare restri
ted to be tight. For tight tasks 
onstant speed-up is suÆ
ient for1-
ompetitiveness, so the lower bound shows that in
reasing the speed of asingle pro
essor is more powerful than in
reasing the number of pro
essors ofspeed 1.This paper extends the 
onferen
e version [5℄. The 
onferen
e version 
ontainsa 1:8-
ompetitive algorithm for metered tasks whi
h alway s
hedules at mosttwo tasks. Our new e=(e � 1)-
ompetitive algorithm is a natural extensionallowing to s
hedule more tasks 
on
urrently. The same algorithm was alsore
ently dis
overed by Chin and Fung [4℄ (independently of our work). Chinand Fung [4℄ also give a new lower bound of 1:25 for metered tasks.2 PreliminariesLet J = f1; 2; : : : ; ng be the given set of tasks, with task j spe
i�ed by thevalues (rj; dj; pj; wj), where rj is its release time, dj is the deadline, pj is thepro
essing time, and wj is the weight of task j representing its pro�t rate.(In the literature, wj is sometimes 
alled the value density, and the produ
twjpj is 
alled the value of task j.) We assume minj rj = 0 and we denote byD = maxj dj the latest deadline. If rj � t < dj, then we say that task j isfeasible at time t.S
hedules. We de�ne a s
hedule for J to be a measurable fun
tion S : R !J[f?g su
h that, for ea
h j and t, jS�1(j)j � pj and S(t) 6= j for t =2 [rj; dj). Inthis de�nition, S(t) denotes the task that is s
heduled at time t, and S(t) = ?4



if no task is s
heduled. For a set X � R, jXj denotes the size (measure) of X.The pro�t of a s
hedule S depends on the model: In the standard model, thepro�t is the sum of the pro�ts of the 
ompleted tasks, that is pro�tS(J) =Pj wjpj, where the sum is taken over all j for whi
h jS�1(j)j = pj. In themetered model, even partially exe
uted tasks 
ount, that is, the pro�t of thes
hedule S is pro�tS(J) = Pj wjjS�1(j)j. The optimal pro�t is pro�tOPT(J) =supS pro�tS(J). It is easy to see that this supremum is a
hieved. Moreover,ea
h s
hedule 
an be transformed into a pie
e-wise 
onstant s
hedule without
hanging the total pro�t (see [3℄). The pro�t of a s
hedule generated by analgorithm A on the instan
e J is denoted by pro�tA(J).For the metered model, it is important to keep in mind that the optimumpro�t is not 
hanged if any task is divided into several tasks with the samerelease times, deadlines, and weights, and whose total pro
essing time is equalto the pro
essing time of the original task. (For this reason it is more naturalto de�ne the weight as the pro�t rate instead of the total pro�t.)For a s
hedule S, let doneS;j(t) = jS�1(j) \ [0; t)j be the amount of task jthat has been pro
essed in S by time t. We de�ne a task j to be a
tive in Sat time t if rj � t < dj and doneS;j(t) < pj. In other words, the a
tive tasksare those that are feasible at time t and have not been 
ompletely pro
essedbefore time t.We say that a s
hedule S is 
anoni
al if for any two times t1 < t2, if j2 =S(t2) 6= ?, then either rj2 > t1, or j1 = S(t1) 6= ? and dj1 � dj2. One wayto think about 
anoni
al s
hedules is this: at ea
h time t, if j is the earliest-deadline task among the a
tive tasks at time t, then we either pro
ess j attime t, or dis
ard j irrevo
ably so that it will never be pro
essed in the future.Any s
hedule S, in
luding an optimal one, 
an be 
onverted into a 
anoni
als
hedule as follows. Consider the instan
e J 0 
onsisting of the portions of tasksthat are pro
essed in S. Res
hedule the tasks in J 0 so that at ea
h time wes
hedule the a
tive task with the earliest deadline. Using a standard ex
hangeargument, it is easy to verify that all tasks are fully pro
essed.Online algorithms. A s
heduling algorithm A is online if, at any time t, itss
hedule depends only on the tasks that have been released before or at time t.An online algorithm A is 
alled R-
ompetitive if pro�tA(J) � pro�tOPT(J)=Rfor every instan
e J . The 
ompetitive ratio of A is the smallest R for whi
h Ais R-
ompetitive.Timesharing and randomizaton. The online algorithms are easier to for-mulate if we allow timesharing of tasks. This means that several tasks maybe pro
essed simultaneously at appropriately redu
ed speeds. As explainedbelow, this does not 
hange the power of the model of metered tasks.5



Formally, a generalized s
hedule is a fun
tion V that, for ea
h task j and timet 2 [0; D), spe
i�es the speed V (j; t) at whi
h we perform task j at time t. Weimpose the following restri
tions on V (j; t):Xj V (j; t) � 1; 1Z0 V (j; t) dt � pj; and V (j; t) = 0 for t =2 [rj; dj)The �rst 
ondition states that the sum of the pro
essing speeds assigned todi�erent tasks 
annot ex
eed the pro
essor speed, and the se
ond 
onditionstates that the total time spent on exe
uting task j does not ex
eed pj.The pro�t of a generalized s
hedule V ispro�tV (J) = Xj wj 1Z0 V (j; t) dt = 1Z0 Xj wjV (j; t) dt:Clearly, this de�nition generalizes the previous one. Both de�nitions are equiv-alent in the o�ine 
ase.In the online 
ase, any generalized s
hedule V 
an be transformed into a s
hed-ule S whi
h simulates the time-sharing in V by alternating the tasks. It is easyto see that if the tasks are alternated with suÆ
iently high frequen
y (
om-pared to the pro
essing times), this transformation in
reases the 
ompetitiveratio only by an arbitrarily small " > 0. So both de�nitions are equivalent inthe online 
ase as well, in the sense that the in�ma of a
hievable 
ompetitiveratios are the same. Throughout the paper we slightly abuse terminology andrefer to the fun
tion V simply as a s
hedule.It is also easy to see that randomized (online) algorithms are no more powerfulthan deterministi
 ones for metered tasks. Any randomized algorithm 
an betransformed into a deterministi
 one by generating a generalized s
hedule inwhi
h at a given time, ea
h task is pro
essed with speed equal to the proba-bility that the randomized algorithm s
hedules it. It is easy to see that anys
heduled task is a
tive, sin
e when the randomized algorithm s
hedules itwith a non-zero probability, it is not 
ompleted and feasible at the given time.Moreover, the pro�t of the deterministi
 algorithm is exa
tly equal to theexpe
ted pro�t of the randomized algorithm. (Note that this fails in the stan-dard model: The randomized algorithm may 
omplete a task with probability1=2, a
hieving one half of its pro�t on average, in whi
h 
ase the deterministi
algorithm s
hedules only a part of the task and a
hieves no pro�t.)Resour
e augmentation. As mentioned in the introdu
tion, we also studytwo variants of the problem where the online algorithms are given more re-sour
es than the optimal s
hedule used as the basis of 
omparison. In the �rst6



variant, with speed-up s, the online algorithm uses a single ma
hine of speeds � 1. A s
hedule for J is a measurable fun
tion S : R ! J [ f?g su
h that,for ea
h j and t, jS�1(j)j � pj=s and S(t) 6= j for t =2 [rj; dj). A pro�t of ajob is wjsjS�1(j)j. In the standard model, a job is 
ompleted if sjS�1(j)j = pjand the pro�t of the s
hedule is the sum of the pro�ts of all 
ompleted jobs.In the metered model, the pro�t is the sum of pro�ts of all jobs, even thoseonly partially 
ompleted.In the se
ond variant, the online algorithm uses m pro
essors of speed 1.A s
hedule for J is then given by an m-tuple of measurable fun
tions Si :R ! J [ f?g, i = 1; : : : ; m, su
h that Pmi=1 jS�1i (j)j � pj for ea
h j and t,Si(t) 6= j for ea
h i and t =2 [rj; dj), and, if Si(t) = Si0(t) for some j and t, thenSi(t) = Si0(t) = ? (i.e., no job is s
heduled on two ma
hines at the same time).We 
onsider only the standard model for this variant. A job is 
ompleted ifPmi=1 jS�1i (j)j = pj. If j is 
ompleted, its pro�t is wjpj, and otherwise it's 0.The total pro�t is the sum of the pro�ts of all 
ompleted jobs.In both variants, we 
ompare a s
hedule generated by the online algorithmthat uses additional resour
es to the optimal s
hedule with no speed-up andno additional ma
hines. We are mainly interested in 1-
ompetitive algorithms,that is, in algorithms that always a
hieve at least the optimal pro�t. (Due tothe additional resour
es su
h an algorithm 
an a
hieve a larger pro�t on someinstan
es.)3 An O�ine Algorithm for Metered TasksIn this se
tion we give an eÆ
ient algorithm for 
omputing the optimal solutionfor metered tasks, addressing a problem posed in [3℄. First we observe thatthe problem 
an be 
ast as a linear programming problem, and thus it 
an besolved in polynomial time. The main goal of this se
tion is to present a moreeÆ
ient algorithm based on bipartite mat
hings and 
ows.The release times and deadlines partition the range [0; D) into 2n�1 intervalsthat we 
all stages. We number the stages 1; 2; : : : ; 2n� 1. If stage s is [a; b),we say that task j is feasible in stage s if it is feasible at any time t 2 [a; b).Linear programming. By `s we denote the length of stage s. Let Æj;s = pjif j is feasible in s and 0 otherwise. With ea
h stage s and ea
h task j weasso
iate the variable xj;s whose value is the amount of task j pro
essed instage s. Any s
hedule 
an be des
ribed by the values of the xj;s, sin
e theordering of the tasks s
heduled within a stage is arbitrary. Then the linearprogram is: 7



maximize Pj;swjxj;ss.t. Ps xj;s � pj 8jPj xj;s � `s 8sxj;s � Æj;s 8j; sxj;s � 0 8j; s (1)
Thus we 
an 
ompute an optimal s
hedule using linear programming, see, e.g.,[7,12℄. This is not fully satisfa
tory, sin
e the running time of polynomial-timealgorithms for linear programming depends on the size of the numbers oninput.Mat
hings and 
ows. Now we present a more eÆ
ient algorithm, whoserunning time is a polynomial fun
tion of n alone (assuming unit time for arith-meti
 operations and 
omparisons of the real numbers representing times).Before giving the algorithm, we prove the following property: any optimals
hedule, restri
ted to a subset of jobs with weights larger than some threshold,is an optimal s
hedule for this subset of jobs. Thus, perhaps surprisingly, theset of optimal s
hedules depends only on the ordering of the weights but noton their values, and every optimal s
hedule 
ontains an optimal s
hedule forany instan
e restri
ted to heavy tasks. In parti
ular, all the optimal s
hedulesin
lude the same portion of the tasks of any given weight.We prove this property �rst for the dis
rete version and then dis
retize andtake a limit for the general 
ase.Order the tasks in an instan
e J so that w1 � w2 � � � � � wn. Without lossof generality, wn > 0. For 
onvenien
e, write wn+1 = 0. Let Jk denote thesub-instan
e 
onsisting of tasks 1; : : : ; k. Given a s
hedule S for J , let Sk bethe restri
tion of S to Jk. In parti
ular, Sn = S. Let busy(S) = jS�1(J)j bethe total time when any task is s
heduled in S.Assume now that all the release times and deadlines are integers and that weonly have unit tasks (with pj = 1). Re
all that the �rst release time is 0 andthe latest deadline is D. In this s
enario preemptions are not ne
essary in theo�ine 
ase. Constru
t a bipartite graph G with verti
es X = fx1; : : : ; xng
orresponding to tasks and Y = fy1; : : : ; yDg 
orresponding to the unit timeslots. If task j is feasible in time unit t then 
onne
t xj and yt with an edge ofweight wj. Let Gk denote the subgraph of G indu
ed by fx1; : : : ; xkg[Y . Anys
hedule de�nes a mat
hing inG and any mat
hing is a s
hedule. So 
omputingan optimal s
hedule is equivalent to 
omputing a maximum-weight mat
hing.8



Lemma 3.1 (a) There exists a maximum-weight mat
hing M in G su
h that,for ea
h k = 1; : : : ; n, M 
ontains a maximum-
ardinality mat
hing of Gk.(b) If M is any maximum-weight mat
hing in G then, for ea
h k = 1; : : : ; nsu
h that wk > wk+1, M 
ontains a maximum-
ardinality mat
hing of Gk.Proof: Let M be a maximum-weight mat
hing in G. Denote by Mk the sub-mat
hing ofM restri
ted to Gk, and suppose that M̂ is a mat
hing in Gk with
ardinality larger than Mk. Consider the symmetri
 di�eren
e of Mk and M̂ .It 
onsists of disjoint alternating 
y
les and paths. Moreover, it 
ontains atleast one odd-length alternating path P with more edges from M̂ than fromMk. Let y be the endpoint of P in Y . Sin
e the weights of the edges dependonly on the endpoints in X, the 
onse
utive pairs of adja
ent edges on P haveequal weights (1st and 2nd, 3rd and 4th, et
., numbering from y), and the lastedge is from M̂ and has weight wp � wk. If y were not mat
hed inM , we 
ouldswap the edges on P in M (i.e., remove from M the edges in M \P =Mk \Pand add the edges in M̂ \ P ), 
reating a mat
hing with weight w(M) + wp,
ontradi
ting the maximality ofM . Thus y has to be mat
hed inM . Then themat
hing edge 
ontaining y has weight wl, for some l > k, and thus wp > wl.Let M 0 be the mat
hing obtained from M by unmat
hing y and swappingthe edges on P . We have w(M 0) = w(M) + wp � wl � w(M). This implies(b): if wk > wk+1 then wl < wp and w(M 0) > w(M), whi
h 
ontradi
ts themaximality of M . To obtain (a), modify all the weights to w0i = wi � i", for" > 0. For a suÆ
iently small ", the maximality of any mat
hing is preservedand all the weights are distin
t. Using (b) with the new weights, it followsthat any maximum-weight mat
hing satis�es (a) with the original weights. 2For a general instan
e, round ea
h pro
essing time, release time, and deadlineto the nearest multiple of " > 0. Taking a limit for "! 0, Lemma 3.1 impliesthe following theorem.Theorem 3.2 (a) There exists an optimal s
hedule S for J su
h that, forea
h k = 1; : : : ; n, Sk is optimal for Jk and busy(Sk) is maximized.(b) If S is any optimal s
hedule then, for ea
h k = 1; : : : ; n su
h that wk >wk+1, Sk is optimal for Jk and busy(Sk) is maximized.Proof: Dis
retize the range [0; D) into small intervals of length " > 0, round-ing the release times and deadlines to the nearest multiple of ". Repla
e ea
hpro
essing time pj is repla
ed by the nearest multiple of ". Let J" be the result-ing dis
rete instan
e. Ea
h s
hedule 
an be repla
ed by a 
anoni
al s
hedulewithout 
hanging busy(Sk). A 
anoni
al s
hedule S for J 
onsists of O(n2)intervals, it is easy to see that there are optimal s
hedules S" for ea
h J", that
onverge to S with " ! 0. By Lemma 3.1 and taking the limit, the theoremfollows. 2 9



Algorithm Opt.(i) Constru
t a 
ow network H with sour
e s, sink t, and verti
es xj for ea
htask j and zi for ea
h stage i. The edges are: (s; xj) for ea
h task j, (xj; zi)for ea
h stage i and ea
h task j feasible in stage i, and (zi; t) for ea
h stagei. The 
apa
ity of ea
h edge (xj; zi) is pj and the 
apa
ity of ea
h edge (zi; t)is `i, the length of stage i. The 
apa
ities of edges (s; xj) are initialized to0. Initialize f 00 to be the zero 
ow.(ii) For j = 1; : : : ; n, do the following:Set the 
apa
ity of (s; xj) to pj.Compute the maximal 
ow, denote it fj. Let Æj = jfjj�jfj�1j be the in
reasein the 
ow value.Set the 
apa
ity of (s; xj) to Æj. Re
ompute the maximal 
ow, denote it f 0j.The resulting maximum 
ow f 0n de�nes a s
hedule: we take fn(xj; zi) to bethe amount of task j s
heduled during stage i. Theorem 3.2 implies thatjfjj = jf 0jj and after iteration j, the 
ow on (s; xj) will remain Æj until the end.Thus Algorithm Opt 
omputes step by step busy(Sj) = jfjj, j = 1; : : : ; n, foran optimal s
hedule S. Therefore f 0n de�nes an optimal s
hedule. The runningtime of Algorithm Opt is no worse than O(n) times the 
omplexity of themaximum 
ow, whi
h is not worse than O(n4).4 A Competitive Online Algorithm for Metered TasksWe now present our e=(e � 1)-
ompetitive online algorithm. Chang and Yapintrodu
ed a greedy algorithm FirstFit that always pro
esses the heaviesttask. The drawba
k of FirstFit is that it may s
hedule a task with a distantdeadline, dis
arding an only slightly less pro�table task with a tight deadline.To avoid this, our algorithm Mixed s
hedules 
on
urrently several tasks: theheaviest task, the heaviest task among those with an earlier deadline, and soon, up to a task with earliest deadline among those with weight at least 1=eof the largest weight.Algorithm Mixed. Constru
t a sequen
e of jobs h1, . . . , hk as follows. Leth1 be an a
tive task j with maximum wj (break ties arbitrarily). Given h1,. . . , hi, 
hoose the next job hi+1 as the heaviest a
tive job j with deadlinedj < dhi (breaking ties arbitrarily); if there is no su
h job or the job has weightwj � wh1=e, set k = i and �nish the 
onstru
tion. Denote the weights of the
hosen jobs vi = whi and set vk+1 = v1=e. S
hedule all jobs hi, i = 1; : : : ; k,with speed V (hi; t) = ln vi � ln vi+1. For j 62 fh1; : : : ; hkg set V (j; t) = 0.At any given time, v1 � v2 � : : : � vk � vk+1, thus V (hi; t) � 0, and the10



sum of speeds of all s
heduled jobs is Pki=1(ln vi � ln vi+1) = ln v1 � ln vk+1 =ln v1 � ln(v1=e) = 1. Thus the s
hedule is well-de�ned. Note also that Mixedkeeps pro
essing the same tasks at the same speeds in-between any of followingat most 2n events: task arrivals, deadlines or task 
ompletions.Theorem 4.1 Algorithm Mixed has 
ompetitive ratio e=(e� 1) � 1:5820.Proof: Let V be the s
hedule generated byMixed and let S be some 
anoni
aloptimal s
hedule.We devise an appropriate 
harging s
heme, des
ribed by a fun
tion C : R ! Rwhi
h maps ea
h time in S to a time in V . The intention is that any pro�ta
hieved at time t in S is \
harged" to the time C(t) in V . We then arguethat ea
h time u in V is 
harged at most e=(e � 1) times the pro�t in V attime u. Further, all pro�t from S is 
harged. These two fa
ts imply e=(e� 1)-
ompetitiveness. Sin
e the \pro�t at time t" is in�nitesimally small, in theformal proof we need to express our argument in terms of \
harged pro�trates". We de�ne another fun
tion F : R ! [0; 1℄ with the intended meaningthat F (t) is the fra
tion of pro�t at time t in S 
harged to time C(t) in V .Consider a time t, and let j = S(t). If doneV;j(t) � doneS;j(t), de�ne C(t) = tand F (t) = 1, i.e., the 
harged pro�t rate of j at time t is vj. Otherwise, letC(t) = u < t, where u is the maximum time su
h that doneV;j(u) = doneS;j(t),and F (t) = V (j; u); i.e., the 
harged pro�t rate of j at time u is vjV (j; u).Choosing u as maximal su
h time implies that V (j; u) > 0. It is easy to 
he
kthat the total 
harged pro�t (i.e., the 
harged pro�t rate integrated over thewhole s
hedule V ) equals the total pro�t of S.Let j be the task s
heduled in S at time t. Let h1, . . . , hk be the taskss
heduled in V at time t, as 
hosen by Mixed. Denote their weights vi = whiand set vk+1 = v1=e. The set C�1(t) 
onsists of at most k+1 points, t and themaximal times t1, . . . , tk su
h that doneV;hi(t) = doneS;hi(ti), if su
h ti existsand satis�es ti > t. If C(t) = t then the 
harged pro�t rate of j at t is wj.If ti is present in C�1(t) then the 
harged pro�t rate of hi at t is V (hi; t)vi.The 
ombined 
harged pro�t rate at t is the sum of these 
ontributions overall points in C�1(t). We show that it is at most e=(e� 1) times the pro�t rateof V at time t. The theorem then follows by integrating over all times t.Case 1: C(t) < t. Then the 
ombined 
harged pro�t rate at t is at most thepro�t rate of V at t (it is equal if all ti are present in C�1(t)).Case 2: C(t) = t. Consider any i su
h that the point ti is present in C�1(t),we show that wj � vi+1. Both tasks j and hi are a
tive at time t both in Vand S: both are released before t, as one of V and S s
hedules s
hedules themat t; both are s
heduled at t or later in S, so they are not 
ompleted in S attime t; hi is s
heduled in V , so it is not 
ompleted; �nally j is not 
ompleted11



in V by de�nition of C and C(t) = t. Sin
e S is a 
anoni
al s
hedule, wehave dj � dhi. If wj > vi+1, Mixed would 
hoose j (or a job with even largerweight) as hi+1 (note that this holds even for i = k). It follows that wj � vi+1.Let z be the largest index (in f1; : : : ; k+1g) su
h that wj � vz. Sin
e j is a
tiveat t in V , it also follows that wj � v1, and thus su
h a z exists. By the previousparagraph, only j and h1, . . . , hz�1 
ontribute to the 
harged pro�t rate at t.Thus the 
ombined 
harged pro�t rate at t is at most X = vz+Pz�1i=1 V (hi; t)vi,using also wj � vz. The pro�t rate of V at t is equal to Y = Pki=1 V (hi; t)vi.We need to show that X � Y � e=(e� 1), or equivalently X � Y � Y=(e� 1).First we derive an auxiliary inequality for any t = 1; : : : ; k:kXi=t V (hi; t)vi= kXi=t ln viZln vi+1 vi dx � kXi=t ln viZln vi+1 ex dx= ln vtZln vk+1 ex dx = vt � vk+1 = vt � v1=e:As a spe
ial 
ase for t = 1 we have Y � v1(1 � 1=e) = v1(e � 1)=e. Now wehaveX � Y = vz � kXi=z V (hi; t)vi � vz � (vz � v1=e) = v1=e � Y=(e� 1):To see that the bound of e=(e� 1) on the 
ompetitive ratio ofMixed is tight,
onsider a small " > 0 and an instan
e with jobs (0; 1 � i"2; 1; 1 � i"), fori = 0; 1; : : : ; b1="
. The deadlines are all very 
lose to 1 (they serve only tobreak ties in the algorithm in the desired way), and the weights 
over withhigh density the interval [0; 1℄. Thus it is easy to 
he
k that, as the " tends to0, the pro�t of Mixed 
onverges to 1� 1=e, while the optimum is e. 25 A Lower Bound for Metered TasksThe idea of the lower bound we prove now is as follows. At ea
h integral timethe algorithm has a 
hoi
e of a job with unit pro
essing time and tight deadlineand another unit job with higher weight and longer deadline. If the algorithms
hedules at most one half of the tight job, the sequen
e ends, and the weightsare set so that in this 
ase the 
ompetitive ratio is too large. Otherwise thesequen
e 
ontinues for a suÆ
iently long time. During this time the weightsin
rease exponentially and in the limit the 
ompetitive ratio is large, too. This12



lower bound was re
ently improved by Chin and Fung [4℄ to 1.25, using ananalysis based on a random distribution of similar input instan
es.Theorem 5.1 The 
ompetitive ratio of any online algorithm for s
hedulingmetered tasks is at least p5� 1 � 1:236.Proof: Fix an online algorithm A and " > 0 arbitrarily small. We show thatthe 
ompetitive ratio of A is at least p5� 1� ", whi
h proves the theorem.Let � = p5 � 2 and let � = (p5 + 1)=2 be the golden ratio. De�ne thesequen
e fvig1i=0 by v0 = 1, v1 = �+ ", and vi+1 = (vi� vi�1)=� for i > 1. Wesolve the re
urren
e: � + 1 and � are the roots of the 
hara
teristi
 equation�x2 � x+ 1 = 0, and we have vi = (1� ")�i + "(�+ 1)i.The adversary strategy is this: Pi
k some large integer n. For ea
h time i =0; 1; 2; : : : the following two tasks arrivetask i: (i; i + 1; 1; vi); task i0: (i; i+ 2; 1; vi+1):If there is an integer time 1 � j < n when A has 
ompleted at most half of taskj�1, the adversary terminates the sequen
e (prior to releasing tasks j and j 0).If this 
ase o

urs, A earns at most pro�tA(J) � 12v0+v1+v2+ � � �+vj�1+vj,and the optimal pro�t is pro�tOPT(J) = (v1+v2+ � � �+vj�1+vj)+vj�1. Usingthe re
urren
e and vj�1 � 1 (in the last inequality) we obtainpro�tOPTpro�tA(J) � (1 + 2Pji=1 vi) + 2vj�1 � 11 + 2Pji=1 vi=1 + 2vj�1 � 11 + 2v1 + 2Pji=2 vi�1�vi�2�=1 + �(2vj�1 � 1)� + 2�v1 + 2vj�1 � 2= 1 + �(2vj�1 � 1)2"� + (2vj�1 � 1) > 1 + � � ":Otherwise, the adversary issues all tasks up to time n � 1, and at time n hereleases task n only. Now pro�tA(J) � 12v0 + v1 + v2 + : : : + vn�1 + 32vn andpro�tOPT(J) = v1 + v2 + : : : + vn�1 + 2vn. Using the re
urren
e and lettingn!1pro�tOPTpro�tA(J) = 2vn + 2Pni=1 vi1 + vn + 2Pni=1 vi = 1 + vn � 11 + v1 + vn + 2vn�1�1��! 1 + �+ 1(�+ 1) + 2� = 1 + �:13



In both 
ases, the 
ompetitive ratio is at least 1 + � � ", as 
laimed. 26 Lower Bounds for Resour
e AugmentationIn this se
tion we prove several lower bounds on resour
e augmentation. Re-
all the de�nition of the importan
e fa
tor � = maxj wj=minj wj. We startwith a lower bound showing that there exists no 1-
ompetitive speed-up O(1)algorithm, both for metered and standard tasks. This disproves a 
onje
tureof Koo et al. [8℄; it is interesting to note in this 
ontext that all the tasks usedin the lower bound are tight or have laxity 2, i.e., dj � rj = 2pj.Theorem 6.1 Both in the metered and standard pro�t model, any online 1-
ompetitive algorithm has speedup at least 
(log log �), where � is the impor-tan
e fa
tor. In parti
ular, there is no 
onstant speed-up 1-
ompetitive algo-rithm.Proof: Fix an integer m. We 
onstru
t an instan
e su
h that any online 1-
ompetitive algorithm needs speed-up m=2. See Figure 1 for an illustration.All tasks ending at the same deadline t have the same pro�t rate h(t) = (2m)t.The tasks are grouped into m + 1 
lasses numbered k = 0; : : : ; m. For k = 0,the tasks in 
lass 0 are(i; i+ 1; 1; h(i+ 1)); i = 0; : : : ; 2m � 1:For k = 1; : : : ; m, the tasks in 
lass k are(i2k; (i+ 1)2k; 2k�1; h((i+ 1)2k)); i = 0; : : : ; 2m�k � 1:For ea
h time t 
onsider the sub-instan
e 
onsisting of the tasks that arereleased before t. We 
laim that the optimal solution of this sub-instan
es
hedules exa
tly all the tasks with deadline t or later. To prove this 
laim, notethat in the sub-instan
e, there is exa
tly one task in ea
h 
lass with deadlineat least t. All these task 
an be s
heduled from time 0 to 2m, 
ompletely �llingthe 
apa
ity of the pro
essor at any time: S
hedule ea
h su
h job j in 
lasses1 to m in that half of the interval [rj; dj) whi
h does not 
ontain the interval[t � 1; t); the interval [t � 1; t) is used by the job in 
lass 0. Sin
e all theother tasks in the sub-instan
e have smaller pro�t rate, this gives the optimalsolution (both for metered and standard tasks).The weights in
rease so fast that the pro�t rate h(t) is at least the total pro�tof all the tasks with deadlines before t: The total pro
essing time of all tasks14
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0 1 4 62 3 5 7 8Fig. 1. The instan
e for m = 3. Solid lines represent feasibility ranges, dotted linesrepresent pro
essing times, and the pro�t rates h(x) are shown above these lines.with deadline equal to t� 1 is at most 2m�1, thus their total pro�t is at most2m�1h(t� 1). By indu
tion, h(t� 1) bounds the total pro�t of all tasks withdeadline before t� 1. Thus the total pro�t of all tasks with deadline before tis at most (2m�1 + 1)h(t� 1) � 2mh(t� 1) = h(t).The previous 
onsiderations show that to a
hieve optimal pro�t, the on-linealgorithm has to 
ompletely exe
ute all the tasks with deadline t, with theex
eption of tasks or their parts (in metered model) with pro
essing timebounded by 1 (sin
e only that mu
h 
an be repla
ed by the hypotheti
 pro�tof tasks with earlier deadlines). Sin
e this holds for any time t, all the tasksmust be 
ompleted, with a possible ex
eption of tasks with total pro
essingtime 2m. The total pro
essing time of all tasks is (m + 2)2m�1, so tasks ortheir parts of total length m2m�1 have to be exe
uted by time 2m. It followsthat A must run at speed at least m=2.Sin
e the deadlines range from 1 to 2m, the importan
e ratio is � = (2m)2m�1and the lower bound is m=2 = 
(log log �). 2Theorem 6.2 In the standard pro�t model, there is no online 1-
ompetitivealgorithm with speed-up s < 2 for s
heduling tight tasks.Proof: Let A be an online 1-
ompetitive algorithm. We show an adversarystrategy that, for any given n, for
es A to run at speed 2�1=n. The adversary
hooses tasks from among 2n�1 tasks de�ned as follows. Task 0 is (0; n; n; 1).For i = 1; : : : ; n� 1, task i is (i� 1; i; 1; 1) and task i0 is (i; n; n� i; n=(n� i)).The adversary strategy is this: issue tasks 0; 1; 2; :::, as long as tasks 1; 2; : : : ; iare fully pro
essed by A by time i. If A fails to fully pro
ess task i, theadversary issues task i0 and halts. If this happens, the instan
e 
ontains tasks0; 1; : : : ; i; i0 whose optimal pro�t is is n + i. To gain this pro�t A needs topro
ess all tasks other than i. Their total length is 2n� 1, so A's speed must15



be at least 2� 1=n.If A pro
esses all tasks 1; :::; n � 1, the instan
e is 0; 1; : : : ; n � 1 and itsmaximum pro�t is n. To a
hieve this pro�t, A must also pro
ess task 0. On
eagain, this means that A's speed is at least 2� 1=n. 2Theorem 6.3 In the standard pro�t model, any online algorithm with m pro-
essors for s
heduling tight tasks has a 
ompetitive ratio of 
( mp�=m) (againsta 1-pro
essor optimum), where � is the importan
e ratio.Proof: Let M be large 
onstant. Suppose A has m ma
hines. The adversary
hooses tasks from m+1 task 
lasses numbered 0; 1; : : : ; m. The tasks in 
lassi have all equal pro
essing time pj = M2i, pro�t rate wj = M�i, and pro�twjpj = M i; their release times are aM2i, for a = 0; 1; : : : ;M2m�2i � 1. Theimportan
e ratio is � = Mm.The adversary strategy is as follows. Sin
e the tasks are tight and we 
onsiderthe standard model, we 
an assume that on
e A fails to run a task, it neverstarts it again. If A stops exe
uting a task j at time t (where t 
ould be dj)then from time t+1 until the deadline of j no tasks from 
lasses 0; 1; : : : ; j�1are released. (In other words, a task arrives if at its release time all the a
tivetasks are running; note that these tasks are only from higher 
lasses.) It followsthat at ea
h time there exists at least one task that was released but is notbeing exe
uted by A. At time t, let jt be su
h a task from the smallest 
lass.Let P be the total pro�t of all the dropped tasks, i.e., tasks not �nishedin A. We prove that (i) the optimal solution s
hedules tasks with pro�t atleast P=(m+ 1), and (ii) the algorithm A s
hedules tasks with pro�t at most2P=(M � 1). The bound on the 
ompetitive ratio follows.The proof of (i) is trivial: The dropped tasks in ea
h 
lass are disjoint, so thedropped tasks in one of the 
lasses have weight at least P=(m+ 1).Now we prove (ii). If a task j running in A at some time t is from a lower-numbered 
lass than jt, we assign it to jt. A task exe
uted byA 
an be assignedto none, one or even more dropped tasks (as jt may 
hange). Any running tasknot assigned at all is always from a higher 
lass than the 
urrent jt. At ea
htime, the total pro�t rate of all su
h tasks is at most 1=(M�1) fra
tion of thepro�t rate of jt. Thus the overall pro�t of all unassigned 
ompleted tasks is atmost P=(M � 1). Now 
onsider all the exe
uted tasks assigned to a parti
ulardropped task j from 
lass i. From the de�nition of the sequen
e it follows thatthere is at most one su
h task from ea
h 
lass i0 < i. Thus their total pro�t(not pro�t rate) is at most 1=(M � 1) fra
tion of the pro�t of j. Hen
e theoverall pro�t of all assigned 
ompleted tasks is at most P=(M � 1), and (ii)follows. 2 16



7 Final CommentsAs we have seen, the model of metered tasks has very ni
e mathemati
alproperties, whi
h also makes it very attra
tive. The main remaining openproblem is to determine the best 
ompetitive ratio for the metered pro�tmodel. The best 
urrent bounds show that this ratio between 1:25 and e=(e�1) � 1:5820, but the gap between these two bounds is still wide. Similarly,in the standard model, we know that the minimum speedup needed to obtaina 1-
ompetitive algorithm is between 
(log log �) and O(log �). It would beinteresting to determine the optimal speedup for this problem.Referen
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