Preemptive Scheduling in Overloaded
Systems

Marek Chrobak ®!# Leah Epstein™?, John Noga®,
Jitf Sgall %34 Rob van Stee ®, Tomas Tichy 434,
Nodari Vakhania 6

aDepartment of Computer Science, University of California, Riverside, CA 92521,
U.S.A.

bSchool of Computer Science, The Interdisciplinary Center, P.O.B. 167,
46150 Herzliya, Israel

¢Department of Computer Science, California State University,
Northridge, CA 91330, U.S.A.

d Mathematical Institute, AS CR, Zitnd 25, CZ-11567 Praha 1, Czech Republic

¢ Institut fir Informatik, Albert-Ludwigs-Universitat, Georges-Kohler-Allee,
79110 Freiburg, Germany

fFacultad de Ciencias, Universidad Autonoma del Estado de Morelos,
62251 Cuernavaca, Morelos, Mezico

Abstract

The following scheduling problem is studied: We are given a set of tasks with re-
lease times, deadlines, and profit rates. The objective is to determine a 1-processor
preemptive schedule of the given tasks that maximizes the overall profit. In the
standard model, each completed task brings profit, while non-completed tasks do
not. In the metered model, a task brings profit proportional to the execution time
even if not completed.

For the metered task model, we present an efficient offline algorithm and improve
both the lower and upper bounds on the competitive ratio of online algorithms.
Furthermore, we prove three lower bound results concerning resource augmentation
in both models.

Key words: Scheduling, online algorithms, deadline, resource augmentation.

Preprint submitted to Elsevier Science 7 February 2003

1 Introduction

In most task scheduling problems the objective is to minimize some function
related to the completion time. This approach is not useful in overloaded sys-
tems, where the number of tasks and their processing times exceed the capacity
of the processor and not all tasks can be completed. In such systems, the goal
is usually to maximize the number of executed tasks or, more generally, to
maximize their value or profit.

The problem can be formalized as follows: we have a set of n tasks, each
task j is specified by its release time r;, deadline d;, processing time p;, and
weight w; representing its profit rate. Preemption is allowed, i.e., each task
can be divided into any number of intervals, with arbitrary granularity. The
objective is to determine a 1-processor preemptive schedule that maximizes
the overall profit. The profit gained from processing task j can be defined in
two ways. In the standard model, each completed task j brings profit w;p;,
but non-completed tasks do not bring any profit. In the metered model, a task
w; executed for time ¢ < p; brings profit w;t even if it is not completed.

In many real-world applications, algorithms for task scheduling are required
to be online. This means that, at any given time, the scheduling algorithm
needs to choose the task to process based only on the specification of the tasks
that have already been released. In general, due to the incomplete information
about the input data, online algorithms cannot compute an optimal solution.
It turns out, however, that for some scheduling problems it is possible to
compute in an online fashion a solution that is within a constant factor of the
optimum.

An online algorithm that approximates the optimal solution within a factor R
is called R-competitive. Online algorithms are also studied in the framework

* Corresponding author.

Email addresses: marek@cs.ucr.edu (Marek Chrobak), lea@idc.ac.il (Leah
Epstein), jnoga@ecs.csun.edu (John Noga), sgall@math.cas.cz (Jiii Sgall),
vanstee@informatik.uni-freiburg.de (Rob van Stee), tichy@math.cas.cz
(Tomas Tichy), nodari@servm.fc.uaem.mx (Nodari Vakhania).

I Supported by NSF grant CCR-9988360.

2 Supported by the Israel Science Foundation, grant No. 250/01-1.

3 Supported by Institute for Theoretical Computer Science, Prague (project
LN00A056 of MSMT CR), grant 201/01/1195 of GA CR, and grant A1019901
of GA AV CR.

4 Supported by cooperative grant KONTAKT-ME476/CCR-9988360-001 from
MSMT CR and NSF.

5 Supported by the Deutsche Forschungsgemeinschaft, Project AL 464/3-1, and by
the European Community, Projects APPOL and APPOL II.

6 Supported by NSF-CONACyT grant E120.1914.

called resource augmentation. The idea is to allow an online algorithm to use
more resources (a faster processor or more processors) and then to compare
its performance to the optimum solution (with no additional resources). For
the scheduling problems, we then ask what competitive ratio can be achieved
for a given speed-up factor s, or what speed-up is necessary to achieve 1-
competitiveness. See [13,2] for more information on competitive analysis in
scheduling and other areas.

The standard model. This problem has been extensively studied. Koren and
Shasha [9] give a (y/€+1)?-competitive algorithm, where £ = max; w;/ min; w;
is called the importance factor. This ratio is in fact optimal [1,9]. Since no
constant-competitive algorithms are possible in this model, it is natural to
study this problem under the resource augmentation framework. Kalyanasun-
daram and Pruhs [6] present an online algorithm that uses a processor with
speed 32 and achieves a constant competitive ratio. Lam and To [11] show an
online algorithm with speed-up O(log¢) and competitive ratio 1. One natural
special case of this problem is when the tasks are tight, that is, for each j
we have d; = r; + p;. For this case, Koo et al. [8] give a 1-competitive algo-
rithm with speed-up O(1), and Lam et al. [10] show that in order to achieve
1-competitiveness the speed-up must be at least ¢ ~ 1.618.

The metered model. This version was introduced (in a different terminol-
ogy) by Chang and Yap [3] in the context of thinwire visualization. In their
application, a user viewing a low-resolution image moves the cursor across the
screen, generating requests for higher resolution data at the cursor positions.
Due to limited bandwidth not all requests can be fully satisfied. However,
even partial improvements of resolution may be beneficial to the viewer. Thus
the profit represents overall quality of service. Metered preemptive tasks also
provide a natural model for various decision making processes where an entity
with limited resources needs to choose between engaging in several profitable
activities. Chang and Yap proved that two online algorithms called FIRSTFIT
and ENDFIT have competitive ratio 2. They also proved that no online algo-
rithm can achieve a competitive ratio better than 2(2 — v/2) ~ 1.17.

Our results. We first focus on the metered profit model. In Section 3, we
consider offline algorithms. We characterize the structure of optimal solutions
and provide a polynomial time algorithm based on bipartite matchings and
maximal flows. This addresses a problem stated in [3].

The online metered case is studied in Section 4 to 6. In Section 4 we present an
algorithm with competitive ratio e/(e — 1) ~ 1.5820. In Section 5 we prove a
lower lower bound of v/5—1 a 1.236 on the competitive ratio of algorithms for
this problem. These results improve both the lower and upper bounds from [3].
(The algorithm FIRSTENDFIT, conjectured in [3] to be 1.5-competitive, is only

2-competitive, as we have shown in the conference version of this paper [5].)

In Section 6 we study the resource augmentation version of this problem, and
prove that no online algorithm with constant speed-up can be 1-competitive,
neither in the metered profit model, nor in the standard model. In fact,
we prove that the minimal speed-up needed to achieve 1-competitiveness is
Q(loglog). Thus we disprove a conjecture from [8] by showing that the prob-
lem with general deadlines is provably harder than the special case of tight
deadlines, and the constant speed-up 1-competitive algorithm for tight tasks
from [8] cannot be extended to general tasks.

Furthermore, we prove some lower bounds for the restricted case of tight tasks
in the standard model. We improve the lower bound from [10], by proving
that, in order to achieve 1-competitiveness, an online algorithm needs speed-
up at least 2. Our last result concerns the model where an online algorithm is
allowed to use m processors of speed 1, rather than a single faster processor.
For this case we prove that the competitive ratio is Q({/£/m), even if all tasks
are restricted to be tight. For tight tasks constant speed-up is sufficient for
1-competitiveness, so the lower bound shows that increasing the speed of a
single processor is more powerful than increasing the number of processors of
speed 1.

This paper extends the conference version [5]. The conference version contains
a 1.8-competitive algorithm for metered tasks which alway schedules at most
two tasks. Our new e/(e — 1)-competitive algorithm is a natural extension
allowing to schedule more tasks concurrently. The same algorithm was also
recently discovered by Chin and Fung [4] (independently of our work). Chin
and Fung [4] also give a new lower bound of 1.25 for metered tasks.

2 Preliminaries

Let J = {1,2,...,n} be the given set of tasks, with task j specified by the
values (r;,d;, p;, w;), where r; is its release time, d; is the deadline, p; is the
processing time, and w; is the weight of task j representing its profit rate.
(In the literature, w; is sometimes called the value density, and the product
w;p; is called the wvalue of task j.) We assume min; 7; = 0 and we denote by
D = max; d; the latest deadline. If r; < ¢ < d;, then we say that task j is
feasible at time t.

Schedules. We define a schedule for J to be a measurable function S : R —
JU{L} such that, for each j and ¢, |S~'(j)| < p; and S(t) # jfort ¢ [r;,d;). In
this definition, S(¢) denotes the task that is scheduled at time ¢, and S(t) = L

if no task is scheduled. For a set X C R, |X| denotes the size (measure) of X.

The profit of a schedule S depends on the model: In the standard model, the
profit is the sum of the profits of the completed tasks, that is profitg(J) =
> w;pj, where the sum is taken over all j for which |S™'(j)| = p;. In the
metered model, even partially executed tasks count, that is, the profit of the
schedule S is profitg(J) = >; w;|S7'(j)|. The optimal profit is profit,,.(.J) =
supg profitg(J). Tt is easy to see that this supremum is achieved. Moreover,
each schedule can be transformed into a piece-wise constant schedule without
changing the total profit (see [3]). The profit of a schedule generated by an
algorithm A on the instance .J is denoted by profit 4(.J).

For the metered model, it is important to keep in mind that the optimum
profit is not changed if any task is divided into several tasks with the same
release times, deadlines, and weights, and whose total processing time is equal
to the processing time of the original task. (For this reason it is more natural
to define the weight as the profit rate instead of the total profit.)

For a schedule S, let dones;(t) = [S™'(j) N [0,t)| be the amount of task j
that has been processed in S by time t. We define a task j to be active in S
at time ¢ if 7; < ¢ < d; and doneg;(t) < p;. In other words, the active tasks
are those that are feasible at time ¢ and have not been completely processed
before time t¢.

We say that a schedule S is canonical if for any two times t; < tq, if jo =
S(ty) # L, then either r;, > ¢, or j; = S(t1) # L and d;, < dj,. One way
to think about canonical schedules is this: at each time ¢, if j is the earliest-
deadline task among the active tasks at time ¢, then we either process j at
time ¢, or discard j irrevocably so that it will never be processed in the future.
Any schedule S, including an optimal one, can be converted into a canonical
schedule as follows. Consider the instance J' consisting of the portions of tasks
that are processed in S. Reschedule the tasks in .J' so that at each time we
schedule the active task with the earliest deadline. Using a standard exchange
argument, it is easy to verify that all tasks are fully processed.

Online algorithms. A scheduling algorithm A is online if, at any time ¢, its
schedule depends only on the tasks that have been released before or at time ¢.
An online algorithm A is called R-competitive if profit 4(J) > profit,,.(J)/R
for every instance .J. The competitive ratio of A is the smallest R for which 4
is R-competitive.

Timesharing and randomizaton. The online algorithms are easier to for-
mulate if we allow timesharing of tasks. This means that several tasks may
be processed simultaneously at appropriately reduced speeds. As explained
below, this does not change the power of the model of metered tasks.

Formally, a generalized schedule is a function V' that, for each task j and time
t € [0, D), specifies the speed V(j,t) at which we perform task j at time ¢. We
impose the following restrictions on V' (7, t):

SVGH <L [VGOd<p, and V(i) =0fort ¢ [r;.d)
J 0

The first condition states that the sum of the processing speeds assigned to
different tasks cannot exceed the processor speed, and the second condition
states that the total time spent on executing task j does not exceed p;.

The profit of a generalized schedule V' is

profity, (J) = ij/V(j,t) dt = /ijV(j,t) dt.

Clearly, this definition generalizes the previous one. Both definitions are equiv-
alent in the offline case.

In the online case, any generalized schedule V' can be transformed into a sched-
ule S which simulates the time-sharing in V' by alternating the tasks. It is easy
to see that if the tasks are alternated with sufficiently high frequency (com-
pared to the processing times), this transformation increases the competitive
ratio only by an arbitrarily small £ > 0. So both definitions are equivalent in
the online case as well, in the sense that the infima of achievable competitive
ratios are the same. Throughout the paper we slightly abuse terminology and
refer to the function V' simply as a schedule.

It is also easy to see that randomized (online) algorithms are no more powerful
than deterministic ones for metered tasks. Any randomized algorithm can be
transformed into a deterministic one by generating a generalized schedule in
which at a given time, each task is processed with speed equal to the proba-
bility that the randomized algorithm schedules it. It is easy to see that any
scheduled task is active, since when the randomized algorithm schedules it
with a non-zero probability, it is not completed and feasible at the given time.
Moreover, the profit of the deterministic algorithm is exactly equal to the
expected profit of the randomized algorithm. (Note that this fails in the stan-
dard model: The randomized algorithm may complete a task with probability
1/2, achieving one half of its profit on average, in which case the deterministic
algorithm schedules only a part of the task and achieves no profit.)

Resource augmentation. As mentioned in the introduction, we also study
two variants of the problem where the online algorithms are given more re-
sources than the optimal schedule used as the basis of comparison. In the first

variant, with speed-up s, the online algorithm uses a single machine of speed
s > 1. A schedule for .J is a measurable function S : R — J U { L} such that,
for each j and t, [S7'(j)| < p;/s and S(t) # j for t ¢ [rj,d;). A profit of a
job is w;s|S7'(j)|. In the standard model, a job is completed if s|S™'(5)| = p;
and the profit of the schedule is the sum of the profits of all completed jobs.
In the metered model, the profit is the sum of profits of all jobs, even those
only partially completed.

In the second variant, the online algorithm uses m processors of speed 1.
A schedule for J is then given by an m-tuple of measurable functions .S; :
R — JU{L},i=1,...,m, such that 37, [S;'(j)| < p, for each j and ¢,
Si(t) # j for each i and t ¢ [r;,d;), and, if S;(t) = Sy (t) for some j and ¢, then
S;(t) = Sy(t) = L (i.e., no job is scheduled on two machines at the same time).
We consider only the standard model for this variant. A job is completed if

™ 1S71(5)] = p;. If j is completed, its profit is w;p;, and otherwise it’s 0.
The total profit is the sum of the profits of all completed jobs.

In both variants, we compare a schedule generated by the online algorithm
that uses additional resources to the optimal schedule with no speed-up and
no additional machines. We are mainly interested in 1-competitive algorithms,
that is, in algorithms that always achieve at least the optimal profit. (Due to
the additional resources such an algorithm can achieve a larger profit on some
instances.)

3 An Offline Algorithm for Metered Tasks

In this section we give an efficient algorithm for computing the optimal solution
for metered tasks, addressing a problem posed in [3]. First we observe that
the problem can be cast as a linear programming problem, and thus it can be
solved in polynomial time. The main goal of this section is to present a more
efficient algorithm based on bipartite matchings and flows.

The release times and deadlines partition the range [0, D) into 2n —1 intervals
that we call stages. We number the stages 1,2,...,2n — 1. If stage s is [a, b),
we say that task j is feasible in stage s if it is feasible at any time ¢ € [a,b).

Linear programming. By (; we denote the length of stage s. Let 6;, = p;
if j is feasible in s and 0 otherwise. With each stage s and each task j we
associate the variable z;, whose value is the amount of task j processed in
stage s. Any schedule can be described by the values of the xz;,, since the
ordering of the tasks scheduled within a stage is arbitrary. Then the linear
program is:

maximize) ; W,
s.t. YsTis < p;j Vj
Y wjs < U5 Vs (1)
Tjs < 055 V),
rjs >0 Vj,s

Thus we can compute an optimal schedule using linear programming, see, e.g.,
[7,12]. This is not fully satisfactory, since the running time of polynomial-time
algorithms for linear programming depends on the size of the numbers on
input.

Matchings and flows. Now we present a more efficient algorithm, whose
running time is a polynomial function of n alone (assuming unit time for arith-
metic operations and comparisons of the real numbers representing times).

Before giving the algorithm, we prove the following property: any optimal
schedule, restricted to a subset of jobs with weights larger than some threshold,
is an optimal schedule for this subset of jobs. Thus, perhaps surprisingly, the
set of optimal schedules depends only on the ordering of the weights but not
on their values, and every optimal schedule contains an optimal schedule for
any instance restricted to heavy tasks. In particular, all the optimal schedules
include the same portion of the tasks of any given weight.

We prove this property first for the discrete version and then discretize and
take a limit for the general case.

Order the tasks in an instance .J so that w; > wy > --- > w,,. Without loss
of generality, w, > 0. For convenience, write w,;; = 0. Let .J, denote the
sub-instance consisting of tasks 1,..., k. Given a schedule S for .J, let S; be

the restriction of S to Ji. In particular, S, = S. Let busy(S) = |S~1(J)| be
the total time when any task is scheduled in S.

Assume now that all the release times and deadlines are integers and that we
only have unit tasks (with p; = 1). Recall that the first release time is 0 and
the latest deadline is D. In this scenario preemptions are not necessary in the
offline case. Construct a bipartite graph G with vertices X = {zy,...,2,}
corresponding to tasks and Y = {y,...,yp} corresponding to the unit time
slots. If task j is feasible in time unit ¢ then connect x; and y, with an edge of
weight w;. Let Gy, denote the subgraph of G induced by {z1,...,2;}UY. Any
schedule defines a matching in G and any matching is a schedule. So computing
an optimal schedule is equivalent to computing a maximum-weight matching.

Lemma 3.1 (a) There exists a mazimum-weight matching M in G such that,
for each k =1,....,n, M contains a maximum-cardinality matching of Gy.

(b) If M is any mazimum-weight matching in G then, for each k = 1,...,n
such that wy, > wyy1, M contains a mazimum-cardinality matching of Gjy..

Proof: Let M be a maximum-weight matching in GG. Denote by M, the sub-
matching of M restricted to Gy, and suppose that Misa matching in G, with
cardinality larger than M. Consider the symmetric difference of M, and M.
It consists of disjoint alternating cycles and paths. Moreover, it contains at
least one odd-length alternating path P with more edges from M than from
M;.. Let y be the endpoint of P in Y. Since the weights of the edges depend
only on the endpoints in X, the consecutive pairs of adjacent edges on P have
equal weights (1st and 2nd, 3rd and 4th, etc., numbering from y), and the last
edge is from M and has weight w, > wy,. If y were not matched in M, we could
swap the edges on P in M (i.e., remove from M the edges in MNP = M; NP
and add the edges in M N P), creating a matching with weight w(M) + w,,
contradicting the maximality of M. Thus y has to be matched in M. Then the
matching edge containing y has weight w;, for some [> k, and thus w, > w;.
Let M' be the matching obtained from M by unmatching y and swapping
the edges on P. We have w(M') = w(M) + w, — w; > w(M). This implies
(b): if wg > wy4y then w; < w, and w(M') > w(M), which contradicts the
maximality of M. To obtain (a), modify all the weights to w! = w; — ie, for
¢ > 0. For a sufficiently small £, the maximality of any matching is preserved
and all the weights are distinct. Using (b) with the new weights, it follows
that any maximum-weight matching satisfies (a) with the original weights. O

For a general instance, round each processing time, release time, and deadline
to the nearest multiple of ¢ > 0. Taking a limit for ¢ — 0, Lemma 3.1 implies
the following theorem.

Theorem 3.2 (a) There exists an optimal schedule S for J such that, for
each k =1,...,n, Sy is optimal for J and busy(Sy) is maximized.

(b) If S is any optimal schedule then, for each k = 1,...,n such that wy >
Wet1, Sk 18 optimal for Jy, and busy(Sk) is mazimized.

Proof: Discretize the range [0, D) into small intervals of length £ > 0, round-
ing the release times and deadlines to the nearest multiple of . Replace each
processing time p; is replaced by the nearest multiple of e. Let J. be the result-
ing discrete instance. Each schedule can be replaced by a canonical schedule
without changing busy(S;). A canonical schedule S for J consists of O(n?)
intervals, it is easy to see that there are optimal schedules S. for each .J., that
converge to S with ¢ — 0. By Lemma 3.1 and taking the limit, the theorem
follows. O

Algorithm OPT.

(i) Construct a flow network H with source s, sink ¢, and vertices x; for each
task j and z; for each stage 7. The edges are: (s, x;) for each task j, (x;,2;)
for each stage i and each task j feasible in stage i, and (z;,t) for each stage
i. The capacity of each edge (z;, 2;) is p; and the capacity of each edge (z;, 1)
is (;, the length of stage i. The capacities of edges (s, ;) are initialized to
0. Initialize f] to be the zero flow.

(ii) For j =1,...,n, do the following:

Set the capacity of (s,x;) to p;.

Compute the maximal flow, denote it f;. Let 6; = |f;|—|f;—1| be the increase
in the flow value.

Set the capacity of (s,2;) to 6;. Recompute the maximal flow, denote it f}.

The resulting maximum flow f, defines a schedule: we take f,(z;,z;) to be
the amount of task j scheduled during stage 7. Theorem 3.2 implies that
|fi| = |f;] and after iteration j, the flow on (s, 2;) will remain 6; until the end.
Thus Algorithm OPT computes step by step busy(S;) = |f;], j=1,...,n, for
an optimal schedule S. Therefore f; defines an optimal schedule. The running
time of Algorithm OPT is no worse than O(n) times the complexity of the
maximum flow, which is not worse than O(n?).

4 A Competitive Online Algorithm for Metered Tasks

We now present our e/(e — 1)-competitive online algorithm. Chang and Yap
introduced a greedy algorithm FIRSTFIT that always processes the heaviest
task. The drawback of FIRSTFIT is that it may schedule a task with a distant
deadline, discarding an only slightly less profitable task with a tight deadline.
To avoid this, our algorithm MIXED schedules concurrently several tasks: the
heaviest task, the heaviest task among those with an earlier deadline, and so
on, up to a task with earliest deadline among those with weight at least 1/e
of the largest weight.

Algorithm MIXED. Construct a sequence of jobs hy, ..., hj as follows. Let
hy be an active task j with maximum w; (break ties arbitrarily). Given hy,
.., h;, choose the next job h;;; as the heaviest active job j with deadline
d; < dy, (breaking ties arbitrarily); if there is no such job or the job has weight
w; < wy, /e, set k =i and finish the construction. Denote the weights of the
chosen jobs v; = wy, and set vy 1 = vy/e. Schedule all jobs h;, i = 1,... k,
with speed V(h;,t) =Inv; —Inv;y . For j & {hq,... hy} set V(j,t) = 0.

At any given time, vy > v9 > ... > v > Upyq, thus V(h;t) > 0, and the

10

sum of speeds of all scheduled jobs is Zle(ln vi—Inviy) =Inv —Invgy =
Inwv; — In(vy/e) = 1. Thus the schedule is well-defined. Note also that MIXED
keeps processing the same tasks at the same speeds in-between any of following
at most 2n events: task arrivals, deadlines or task completions.

Theorem 4.1 Algorithm MIXED has competitive ratio e/(e — 1) ~ 1.5820.

Proof: Let V' be the schedule generated by MIXED and let .S be some canonical
optimal schedule.

We devise an appropriate charging scheme, described by a function C': R — R
which maps each time in S to a time in V. The intention is that any profit
achieved at time ¢ in S is “charged” to the time C(¢) in V. We then argue
that each time w in V' is charged at most e/(e — 1) times the profit in V' at
time u. Further, all profit from S is charged. These two facts imply e/(e — 1)-
competitiveness. Since the “profit at time ¢” is infinitesimally small, in the
formal proof we need to express our argument in terms of “charged profit
rates”. We define another function F': R — [0, 1] with the intended meaning
that F'(¢) is the fraction of profit at time ¢ in S charged to time C(¢) in V.

Consider a time ¢, and let j = S(¢). If doney;(t) < doneg;(t), define C(t) =t
and F(t) = 1, i.e., the charged profit rate of j at time ¢ is v;. Otherwise, let
C(t) = u < t, where u is the maximum time such that doney;(u) = doneg ;(t),
and F(t) = V(j,u); i.e., the charged profit rate of j at time u is v;V (j, u).
Choosing u as maximal such time implies that V'(j, u) > 0. It is easy to check
that the total charged profit (i.e., the charged profit rate integrated over the
whole schedule V') equals the total profit of S.

Let j be the task scheduled in S at time ¢. Let hy, ..., hy be the tasks
scheduled in V' at time ¢, as chosen by MIXED. Denote their weights v; = wy,
and set vyy1 = vy /e. The set C~1(t) consists of at most k+ 1 points, and the
maximal times ¢y, ..., ¢ such that doney,, (t) = dones,(t;), if such ¢; exists
and satisfies ¢; > t. If C(t) = t then the charged profit rate of j at t is wj.
If ¢, is present in C~'(¢) then the charged profit rate of h; at t is V(h;, t)v;.
The combined charged profit rate at ¢ is the sum of these contributions over
all points in C'~1(¢). We show that it is at most ¢/(e — 1) times the profit rate
of V' at time ¢t. The theorem then follows by integrating over all times ¢.

Case 1: C(t) < t. Then the combined charged profit rate at ¢ is at most the
profit rate of V at ¢ (it is equal if all #; are present in C'~1(¢)).

Case 2: C(t) = t. Consider any 7 such that the point #; is present in C~'(¢),
we show that w; < v;;;. Both tasks j and h, are active at time ¢ both in V/
and S: both are released before ¢, as one of V' and S schedules schedules them
at t; both are scheduled at ¢ or later in .S, so they are not completed in S at
time t; h; is scheduled in V', so it is not completed; finally j is not completed

11

in V' by definition of C' and C(¢) = ¢. Since S is a canonical schedule, we
have d; < d;,. If w; > v;41, MIXED would choose j (or a job with even larger
weight) as h; 41 (note that this holds even for i = k). It follows that w; < v;41.

Let z be the largest index (in {1,..., k+1}) such that w; < v,. Since j is active
at tin V, it also follows that w; < vy, and thus such a z exists. By the previous
paragraph, only j and hy, ..., h. 1 contribute to the charged profit rate at t.
Thus the combined charged profit rate at ¢ is at most X = v, + 77! V(h;, t)v;,
using also w; < v,. The profit rate of V at ¢ is equal to Y = S8, V{(h,, t)o;.
We need to show that X <Y -e/(e — 1), or equivalently X — Y <Y/(e —1).

First we derive an auxiliary inequality for any ¢t =1,..., k:
k k In v; k In v;
ZV(hi,t)vi:Z / v, dr > Z / e’ dx
i=t i:tlnvi+1 i:tlnvi+1
In v
= e"dr = v — v = v — vy /e.
Inwvgyq

As a special case for t = 1 we have Y > v1(1 —1/e) = vy(e — 1)/e. Now we
have

X-Y=v.-) V(hyt)y; <v. — (v: —vi/e) =vi/e <YV/(e—1).

i=z

To see that the bound of e/(e — 1) on the competitive ratio of MIXED is tight,
consider a small £ > 0 and an instance with jobs (0,1 — i, 1,1 — ig), for
i =0,1,...,|1/2]. The deadlines are all very close to 1 (they serve only to
break ties in the algorithm in the desired way), and the weights cover with
high density the interval [0, 1]. Thus it is easy to check that, as the ¢ tends to
0, the profit of MIXED converges to 1 — 1/e, while the optimum is e. O

5 A Lower Bound for Metered Tasks

The idea of the lower bound we prove now is as follows. At each integral time
the algorithm has a choice of a job with unit processing time and tight deadline
and another unit job with higher weight and longer deadline. If the algorithm
schedules at most one half of the tight job, the sequence ends, and the weights
are set so that in this case the competitive ratio is too large. Otherwise the
sequence continues for a sufficiently long time. During this time the weights
increase exponentially and in the limit the competitive ratio is large, too. This

12

lower bound was recently improved by Chin and Fung [4] to 1.25, using an
analysis based on a random distribution of similar input instances.

Theorem 5.1 The competitive ratio of any online algorithm for scheduling
metered tasks is at least /5 — 1 ~ 1.236.

Proof: Fix an online algorithm A and £ > 0 arbitrarily small. We show that
the competitive ratio of A is at least /5 — 1 — &, which proves the theorem.

Let 0 = /5 — 2 and let ¢ = (v/5+ 1)/2 be the golden ratio. Define the
sequence {v;}2, by vg =1, v = ¢+ ¢, and v, 41 = (v; — v;—1)/o for i > 1. We
solve the recurrence: ¢ + 1 and ¢ are the roots of the characteristic equation
or? —x+1=0, and we have v; = (1 —)¢’ + (¢ + 1)*.

The adversary strategy is this: Pick some large integer n. For each time ¢ =
0,1,2,... the following two tasks arrive

task - (i,i+1,1,v;), task i': (4,04 2,1,v;41).

If there is an integer time 1 < j < n when A has completed at most half of task
j—1, the adversary terminates the sequence (prior to releasing tasks j and j').
If this case occurs, A earns at most profity(J) < svg+vi+v2+- -+ vj_1+v;,
and the optimal profit is profit,,.(J) = (vi +va+---+vj_1 +v;) +v;_1. Using
the recurrence and v;_y > 1 (in the last inequality) we obtain

profit, e, S (142 23521 Vi) + 20, — 1

profit 4(J) — 1+257_ v
=1+ 2l
1420 + 2], Uete2
. O'(2Uj_1 —].)
N O'—|-20'Ul+21)j,1—2
0'(21)]',1 — 1)

> 140—-c¢.

2e0 + (2051 — 1)

Otherwise, the adversary issues all tasks up to time n» — 1, and at time n he
releases task n only. Now profit 4(J) < %vo 4o 4+ve+ ..+ v+ %vn and
profitop,(J) = v1 + v2 + ... 4+ v,_1 + 20,. Using the recurrence and letting
n — oo

p’roﬁtopT _ 27)n+22?:1 v 14 v, — 1
pmﬁtA(J) B 14+v,+2X0 v - 1+U1+vn+2%
o+1
—1l+——— = 1+4o0.
(p+1)+2

13

In both cases, the competitive ratio is at least 1 + o — £, as claimed. O

6 Lower Bounds for Resource Augmentation

In this section we prove several lower bounds on resource augmentation. Re-
call the definition of the importance factor ¢ = max; w;/ min; w;. We start
with a lower bound showing that there exists no 1-competitive speed-up O(1)
algorithm, both for metered and standard tasks. This disproves a conjecture
of Koo et al. [8]; it is interesting to note in this context that all the tasks used
in the lower bound are tight or have laxity 2. i.e., d; — r; = 2p;.

Theorem 6.1 Both in the metered and standard profit model, any online 1-
competitive algorithm has speedup at least Q(loglog&), where & is the impor-
tance factor. In particular, there is no constant speed-up 1-competitive algo-
rithm.

Proof: Fix an integer m. We construct an instance such that any online 1-
competitive algorithm needs speed-up m/2. See Figure 1 for an illustration.
All tasks ending at the same deadline ¢ have the same profit rate h(t) = (2™)".
The tasks are grouped into m + 1 classes numbered k£ = 0,...,m. For k = 0,
the tasks in class 0 are

(i,i4+1,1,h(i+1)), i=0,...,2"—1.

For £k =1,....m, the tasks in class k are
(128, (i +)28 2 n((i +1)2%), i=0,...,2mF —1.

For each time ¢ consider the sub-instance consisting of the tasks that are
released before t. We claim that the optimal solution of this sub-instance
schedules exactly all the tasks with deadline ¢ or later. To prove this claim, note
that in the sub-instance, there is exactly one task in each class with deadline
at least t. All these task can be scheduled from time 0 to 2™, completely filling
the capacity of the processor at any time: Schedule each such job j in classes
1 to m in that half of the interval [r;, d;) which does not contain the interval
[t — 1,t); the interval [t — 1,¢) is used by the job in class 0. Since all the
other tasks in the sub-instance have smaller profit rate, this gives the optimal
solution (both for metered and standard tasks).

The weights increase so fast that the profit rate h(¢) is at least the total profit
of all the tasks with deadlines before ¢: The total processing time of all tasks

14

Fig. 1. The instance for m = 3. Solid lines represent feasibility ranges, dotted lines
represent processing times, and the profit rates h(x) are shown above these lines.

with deadline equal to ¢ — 1 is at most 2™~!, thus their total profit is at most
2™~ (t — 1). By induction, h(f — 1) bounds the total profit of all tasks with
deadline before ¢ — 1. Thus the total profit of all tasks with deadline before ¢
is at most (277" + 1)h(t — 1) < 2™h(t — 1) = h(1).

The previous considerations show that to achieve optimal profit, the on-line
algorithm has to completely execute all the tasks with deadline ¢, with the
exception of tasks or their parts (in metered model) with processing time
bounded by 1 (since only that much can be replaced by the hypothetic profit
of tasks with earlier deadlines). Since this holds for any time ¢, all the tasks
must be completed, with a possible exception of tasks with total processing
time 2™. The total processing time of all tasks is (m + 2)2™~!, so tasks or
their parts of total length m2™~! have to be executed by time 2. It follows
that A4 must run at speed at least m/2.

Since the deadlines range from 1 to 2, the importance ratio is & = (2)?" !
and the lower bound is m/2 = Q(loglog§). O

Theorem 6.2 In the standard profit model, there is no online 1-competitive
algorithm with speed-up s < 2 for scheduling tight tasks.

Proof: Let A be an online 1-competitive algorithm. We show an adversary
strategy that, for any given n, forces A to run at speed 2—1/n. The adversary
chooses tasks from among 2n — 1 tasks defined as follows. Task 0is (0,n,n,1).
Fori=1,...,n—1, task iis (i—1,4,1,1) and task i" is (i,n,n —i,n/(n —1)).

The adversary strategy is this: issue tasks 0,1, 2, ..., as long as tasks 1,2,...,1
are fully processed by A by time i. If A fails to fully process task i, the
adversary issues task ¢’ and halts. If this happens, the instance contains tasks
0,1,....4,7" whose optimal profit is is n + 4. To gain this profit A needs to
process all tasks other than i. Their total length is 2n — 1, so A’s speed must

15

be at least 2 — 1/n.

If A processes all tasks 1,...,n — 1, the instance is 0,1,...,n — 1 and its
maximum profit is n. To achieve this profit, A must also process task 0. Once
again, this means that A’s speed is at least 2 — 1/n. O

Theorem 6.3 In the standard profit model, any online algorithm with m pro-
cessors for scheduling tight tasks has a competitive ratio of Q(X/E/m) (against
a 1-processor optimum), where £ is the importance ratio.

Proof: Let M be large constant. Suppose A has m machines. The adversary
chooses tasks from m + 1 task classes numbered 0,1, ..., m. The tasks in class
i have all equal processing time p; = M?%, profit rate w; = M, and profit
w;p; = M'; their release times are aM?, for a = 0,1,..., M*"~? — 1. The
importance ratio is £ = M™.

The adversary strategy is as follows. Since the tasks are tight and we consider
the standard model, we can assume that once A fails to run a task, it never
starts it again. If A stops executing a task j at time ¢ (where ¢ could be d;)
then from time £+ 1 until the deadline of j no tasks from classes 0,1,...,j—1
are released. (In other words, a task arrives if at its release time all the active
tasks are running; note that these tasks are only from higher classes.) It follows
that at each time there exists at least one task that was released but is not
being executed by A. At time ¢, let j; be such a task from the smallest class.

Let P be the total profit of all the dropped tasks, i.e., tasks not finished
in A. We prove that (i) the optimal solution schedules tasks with profit at
least P/(m + 1), and (ii) the algorithm A schedules tasks with profit at most
2P/(M —1). The bound on the competitive ratio follows.

The proof of (i) is trivial: The dropped tasks in each class are disjoint, so the
dropped tasks in one of the classes have weight at least P/(m + 1).

Now we prove (ii). If a task j running in A at some time ¢ is from a lower-
numbered class than j;, we assign it to j;. A task executed by A can be assigned
to none, one or even more dropped tasks (as j; may change). Any running task
not assigned at all is always from a higher class than the current j;. At each
time, the total profit rate of all such tasks is at most 1/(M — 1) fraction of the
profit rate of j;. Thus the overall profit of all unassigned completed tasks is at
most P/(M —1). Now consider all the executed tasks assigned to a particular
dropped task j from class 7. From the definition of the sequence it follows that
there is at most one such task from each class i’ < i. Thus their total profit
(not profit rate) is at most 1/(M — 1) fraction of the profit of j. Hence the
overall profit of all assigned completed tasks is at most P/(M — 1), and (ii)
follows. O

16

7

Final Comments

As we have seen, the model of metered tasks has very nice mathematical
properties, which also makes it very attractive. The main remaining open
problem is to determine the best competitive ratio for the metered profit
model. The best current bounds show that this ratio between 1.25 and e/(e —

1)

~ 1.5820, but the gap between these two bounds is still wide. Similarly,

in the standard model, we know that the minimum speedup needed to obtain
a l-competitive algorithm is between Q(loglogé) and O(log¢). It would be
interesting to determine the optimal speedup for this problem.

References

[1]

2]

[3]

[4]

[9]

Sanjoy Baruah, Gilad Koren, Decao Mao, Bud Mishra, Arvind Raghunathan,
Louis Rosier, Dennis Shasha, and Fuxing Wang. On the competitiveness of
on-line real-time task scheduling. Real-Time Systems, 4:125-144, 1992.

Allan Borodin and Ran El-Yaniv. Online Computation and Competitive
Analysis. Cambridge University Press, 1998.

Ee-Chien Chang and Chee Yap. Competitive online scheduling with level
of service. In Proc. 7th Annual International Computing and Combinatorics
Conference, volume 2108 of Lecture Notes in Computer Science, pages 453—
462. Springer, 2001.

Francis Y. L. Chin and Stanley P. Y. Fung On-line scheduling with partial job
values: Does timesharing or randomization help? Manuscript, 2002. To appear
in Algorithmica.

Marek Chrobak, Leah Epstein, John Noga, Jiti Sgall, Rob van Stee, Tomas
Tichy, and Nodari Vakhania. Preemptive scheduling in overloaded systems.
In Proc. of the 28th International Colloquium on Automata, Languages, and
Programming, Lecture Notes in Comput. Sci. 2380, pages 800-811. Springer-
Verlag, 2002.

Bala Kalyanasundaram and Kirk Pruhs. Speed is as powerful as clairvoyance.
Journal of the ACM, 47(4):214-221, 2000.

Howard Karloff. Linear Programming. Birkhauser, Boston, 1991.

Chiu-Yuen Koo, Tak-Wah Lam, Tsuen-Wan Ngan, and Kar-Keung To. On-
line scheduling with tight deadlines. In Proc. 26th Symp. on Mathematical
Foundations of Computer Science, volume 2136 of Lecture Notes in Computer
Science, pages 464-473, 2001.

G. Koren and D. Shasha. d°”®": an optimal on-line scheduling algorithm
for overloaded uniprocessor real-time systems. SIAM Journal on Computing,
24:318-339, 1995.

17

[10] Tak-Wah Lam, Tsuen-Wan Ngan, and Ker-Keung To. On the speed requirement
for optimal deadline scheduling in overloaded systems. In Proc. 15th
International Parallel and Distributed Processing Symposium, page 202, 2001.

[11] Tak-Wah Lam and Ker-Keung To. Trade-offs between speed and processor in
hard-deadline scheduling. In Proc. 10th Symp. on Discrete Algorithms, pages
755-764, 1999.

[12] C. Roos, T. Terlaky, and J.-Ph. Vial. Theory and Algorithms for Linear
Optimization: An Interior Point Approach. John Wiley and Sons, Chichester,
1997.

[13] Jiti Sgall. Online scheduling. In Online Algorithms: The State of Art, pages
196-227. Springer-Verlag, 1998.

18

